再次用【飞桨】实现波士顿房价预测并解析

922 阅读6分钟

很久之前学习飞桨,波士顿房价预测是入门练习项目,以前写过,例如:使用飞桨实现波士顿房价预测,现在重新写一遍,并解释一遍。

零、前置知识

需要懂点numpy,懂点PaddlePaddle基础,具体大家可以看看飞桨官网www.paddlepaddle.org.cn/,安装等很详细了,再次就不讲了,毕竟他是中文出身,无缝学习。

一、思路

做久了,就很清楚,这类问题一般就是数据处理--模型设计--训练配置--训练过程--保存模型五大步骤,没啥好说的了。

c99fc17606ec406b8b09df54c5be3b0d75b07758c0384a36997b1f19bb030458.png

二、框架选择

深度学习框架很多,有numpy、pytorch、paddlepaddle、tensorflow诸如此类,多不胜数,那么这次我们选择paddlepaddle。

import paddle 
from paddle.nn import Linear 
import paddle.nn.functional as F 
import numpy as np 
import os 
import random
  • paddle:飞桨的主库,paddle 根目录下保留了常用API的别名,当前包括:paddle.tensor、paddle.framework、paddle.device目录下的所有API。
  • Linear:神经网络的全连接层函数,包含所有输入权重相加的基本神经元结构。在房价预测任务中,使用只有一层的神经网络(全连接层)实现线性回归模型。
  • paddle.nn:组网相关的API,包括 Linear、卷积 Conv2D、循环神经网络LSTM、损失函数CrossEntropyLoss、激活函数ReLU等。
  • paddle.nn.functional:与paddle.nn一样,包含组网相关的API,如:Linear、激活函数ReLU等,二者包含的同名模块功能相同,运行性能也基本一致。 差别在于paddle.nn目录下的模块均是类,每个类自带模块参数;paddle.nn.functional目录下的模块均是函数,需要手动传入函数计算所需要的参数。在实际使用时,卷积、全连接层等本身具有可学习的参数,建议使用paddle.nn;而激活函数、池化等操作没有可学习参数,可以考虑使用paddle.nn.functional。

注意: 飞桨有动态和静态模式两种。

  • 动态图模式,解析方便
  • 静态图模式,先编译优化,再执行 一般都是先动态图训练,然后转静态,再推理部署,这样的好处是训练方便,部署速度快!

三、数据处理

数据处理此处较为简单

def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ', dtype=np.float32)

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值
    maximums, minimums = training_data.max(axis=0), training_data.min(axis=0)
    
    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    
    max_values = maximums
    min_values = minimums
    
    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - min_values[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data
    
    # 验证数据集读取程序的正确性 
    training_data, test_data = load_data() 
    print(training_data.shape) 
    print(training_data[1,:])

此处是从work目录下导入数据集,主要工作由以下几步:

  • 数据集划分,按0.8划分训练集测试集。
  • 数据归一化。
  • 验证数据读取

四、模型设计

模型设计主要是继承paddle.nn.Layer父类,并且在类中定义init函数和forward函数。

  • forward函数是框架指定实现前向计算逻辑的函数,程序在调用模型实例时会自动执行,forward函数中使用的。
  • 网络层需要在init函数中声明。

class Regressor(paddle.nn.Layer):

    # self代表类的实例自身
    def __init__(self):
        # 初始化父类中的一些参数
        super(Regressor, self).__init__()
        
        # 定义一层全连接层,输入维度是13,输出维度是1
        self.fc = Linear(in_features=13, out_features=1)
    
    # 网络的前向计算
    def forward(self, inputs):
        x = self.fc(inputs)
        return x

五、训练配置

  • 指定训练资源
  • 指定训练参数,如学习率、损失函数等
  • 学习率设置为0.01

96075d4df5ae4e01ac1491ebf176fa557bd122b646ba49238f65c9b38a98cab4.jpg

# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

模型实例有两种状态:训练状态.train()和预测状态.eval()

六、模型训练

训练过程采用二层循环嵌套方式:

  • 内层循环:  遍历数据集,通过参数 batch size 设置。

  • 外层循环:  定义遍历数据集的次数,通过参数EPOCH_NUM设置。

8154cf612a024a3f9144b4e31f59568ef9ad59c155b344919221d63bb9ccfcc8.jpg


EPOCH_NUM = 10   # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小

# 定义外层循环
for epoch_id in range(EPOCH_NUM):
    # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
    np.random.shuffle(training_data)
    # 将训练数据进行拆分,每个batch包含10条数据
    mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
    # 定义内层循环
    for iter_id, mini_batch in enumerate(mini_batches):
        x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据
        y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价)
        # 将numpy数据转为飞桨动态图tensor的格式
        house_features = paddle.to_tensor(x,dtype='float32')
        prices = paddle.to_tensor(y,dtype='float32')
        
        # 前向计算
        predicts = model(house_features)

        # 计算损失
        loss = F.square_error_cost(predicts, label=prices)
        avg_loss = paddle.mean(loss)
        if iter_id%20==0:
            print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))
        
        # 反向传播,计算每层参数的梯度值
        avg_loss.backward()
        # 更新参数,根据设置好的学习率迭代一步
        opt.step()
        # 清空梯度变量,以备下一轮计算
        opt.clear_grad()

七、保存模型

模型保存参考api:www.paddlepaddle.org.cn/documentati…,model.state_dict(),保存模型。

# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

八、模型预测

  • 加载数据
  • 预测数据
def load_one_example():
    # 从上边已加载的测试集中,随机选择一条作为测试数据
    idx = np.random.randint(0, test_data.shape[0])
    idx = -10
    one_data, label = test_data[idx, :-1], test_data[idx, -1]
    # 修改该条数据shape为[1,13]
    one_data =  one_data.reshape([1,-1])

    return one_data, label


# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()

# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data,dtype="float32")
predict = model(one_data)

# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + min_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + min_values[-1]

print("Inference result is {}, the corresponding label is {}".format(predict.numpy(), label))

九、高层API训练

import paddle
paddle.set_default_dtype("float32")

# 用高层API定义数据集,无需进行数据处理等,高层API为你一条龙搞定
train_dataset = paddle.text.datasets.UCIHousing(mode='train')
eval_dataset = paddle.text.datasets.UCIHousing(mode='test')

# 训练模型
model = paddle.Model(Regressor())
model.prepare(paddle.optimizer.SGD(learning_rate=0.005, parameters=model.parameters()),
              paddle.nn.MSELoss())
model.fit(train_dataset, eval_dataset, epochs=10, batch_size=8, verbose=1)

result = model.evaluate(eval_dataset, batch_size=8)
print("result:",result)

result_pred = model.predict(one_data, batch_size=1) # result_pred是一个list,元素数目对应模型的输出数目
result_pred = result_pred[0] # tuple,其中第一个值是个array
print("Inference result is {}, the corresponding label is {}".format(result_pred[0][0], label))

微信截图_20230308203943.png

十、代码及数据

代码和数据上传百度网盘。

链接:pan.baidu.com/s/1QV6p_qoE…

提取码:uqc9

本文正在参加「金石计划」