05 棋盘问题
1、N皇后
题目简介:
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将
n个皇后放置在n×n的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数
n,返回所有不同的 **n 皇后问题 的解决方案。每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中
'Q'和'.'分别代表了皇后和空位。
示例:
输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。
题解:
二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。
1、递归函数的返回值以及参数:
定义全局变量二维数组result来记录最终结果。参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。
2、回溯函数终止条件:
当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。
3、单层搜索的过程:
递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。
List<List<String>> res = new ArrayList<>();
public List<List<String>> solveNQueens(int n) {
char[][] chessboard = new char[n][n];
for (char[] c : chessboard) {
Arrays.fill(c, '.');
}
backTrack(n, 0, chessboard);
return res;
}
public void backTrack(int n, int row, char[][] chessboard) {
if (row == n) {
res.add(Array2List(chessboard));
return;
}
for (int col = 0;col < n; ++col) {
if (isValid (row, col, n, chessboard)) {
chessboard[row][col] = 'Q';
backTrack(n, row+1, chessboard);
chessboard[row][col] = '.';
}
}
}
public List Array2List(char[][] chessboard) {
List<String> list = new ArrayList<>();
for (char[] c : chessboard) {
list.add(String.copyValueOf(c));
}
return list;
}
public boolean isValid(int row, int col, int n, char[][] chessboard) {
// 检查列
for (int i=0; i<row; ++i) { // 相当于剪枝
if (chessboard[i][col] == 'Q') {
return false;
}
}
// 检查45度对角线
for (int i=row-1, j=col-1; i>=0 && j>=0; i--, j--) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
// 检查135度对角线
for (int i=row-1, j=col+1; i>=0 && j<=n-1; i--, j++) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
return true;
}
2、解数独
题目简介:
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字
1-9在每一行只能出现一次。- 数字
1-9在每一列只能出现一次。- 数字
1-9在每一个以粗实线分隔的3x3宫内只能出现一次。(请参考示例图)数独部分空格内已填入了数字,空白格用
'.'表示
示例:
输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
题解:
本题中棋盘的每一个位置都要放一个数字(而N皇后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深。
1、递归函数的返回值以及参数:
递归函数的返回值需要是bool类型,因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径,所以需要使用bool返回值。
2、回溯函数终止条件:
本题递归不用终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。
3、单层搜索的过程:
一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,一行一列确定下来之后,递归遍历这个位置放9个数字的可能性!
public void solveSudoku(char[][] board) {
solveSudokuHelper(board);
}
private boolean solveSudokuHelper(char[][] board){
//「一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,
// 一行一列确定下来之后,递归遍历这个位置放9个数字的可能性!」
for (int i = 0; i < 9; i++){ // 遍历行
for (int j = 0; j < 9; j++){ // 遍历列
if (board[i][j] != '.'){ // 跳过原始数字
continue;
}
for (char k = '1'; k <= '9'; k++){ // (i, j) 这个位置放k是否合适
if (isValidSudoku(i, j, k, board)){
board[i][j] = k;
if (solveSudokuHelper(board)){ // 如果找到合适一组立刻返回
return true;
}
board[i][j] = '.';
}
}
// 9个数都试完了,都不行,那么就返回false
return false;
// 因为如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解!
// 那么会直接返回, 「这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去!」
}
}
// 遍历完没有返回false,说明找到了合适棋盘位置了
return true;
}
/**
* 判断棋盘是否合法有如下三个维度:
* 同行是否重复
* 同列是否重复
* 9宫格里是否重复
*/
private boolean isValidSudoku(int row, int col, char val, char[][] board){
// 同行是否重复
for (int i = 0; i < 9; i++){
if (board[row][i] == val){
return false;
}
}
// 同列是否重复
for (int j = 0; j < 9; j++){
if (board[j][col] == val){
return false;
}
}
// 9宫格里是否重复
int startRow = (row / 3) * 3;
int startCol = (col / 3) * 3;
for (int i = startRow; i < startRow + 3; i++){
for (int j = startCol; j < startCol + 3; j++){
if (board[i][j] == val){
return false;
}
}
}
return true;
}