「考研数学」

303 阅读3分钟

考研数学基础核心计算

1、函数求极限

一、无穷小的比较

1、已知 limxx0f(x)=0,limxx0g(x)=0\lim_{x \to x0} f(x) = 0, \lim_{x \to x0}g(x) = 0

(1)limxx0f(x)g(x)=0,\lim_{x \to x0} \frac{f(x)}{g(x)} = 0,则称f(x)是g(x)在{x x0\to x0}时的高阶无穷小, 记作f(x) = o(g(x));

(2)limxx0f(x)g(x)=\lim_{x \to x0} \frac{f(x)}{g(x)} = ∞,则称f(x)是g(x)在{x x0\to x0}时的低阶无穷小;

(3)limxx0f(x)g(x)=k0\lim_{x \to x0} \frac{f(x)}{g(x)} = k \neq 0,则称f(x)是g(x)在{x x0\to x0}时的同阶无穷小;\特别地, 若limxx0f(x)g(x)=1\lim _{x \to x0} \frac{f(x)}{g(x)} = 1,则称f(x)是g(x)在{x x0\to x0}时的等阶无穷小。

二、常见等价无穷小(x \to 0时)

  • x的1阶无穷小: (1)sinxx\sin x \sim x (2)tanxx\tan x \sim x (3)arcsinxx)\arcsin x \sim x (4)arctanxx\arctan x \sim x (5) ln(1+x)x\ln(1 + x) \sim x (6) ex1xe^{x} - 1 \sim x (7)ax1xlnaa^{x} - 1 \sim xlna (8)1+xn11nx\sqrt[n]{1 + x} - 1 \sim \frac{1}{n}x (9)(1+x)a1ax(1 + x) ^ a - 1 \sim ax

  • x的2阶无穷小: (1)1cosx12x21 - \cos x \sim \frac{1}{2}x^2 (2)1cosnxn2x21 - \cos^nx \sim \frac{n}{2}x^2 (3)ln(1+x)x12x2\ln(1 + x) - x \sim \frac{1}{2}x^2

  • x的3阶无穷小: (1)xsinx16x3x - \sin x \sim \frac{1}{6}x^3 (2)tanxx13x3\tan x - x \sim \frac{1}{3}x^3 (3)xarcsinx16x3x - arcsinx \sim \frac{1}{6}x^3 (4)arctanxx13x3\arctan x - x \sim \frac{1}{3}x^3

三、等价替换原理

1、αα~,ββ~,limβ~α~存在,则limβα=limβ~α~.若\alpha \sim \tilde{\alpha} ,\beta \sim \tilde{\beta},且\lim{\frac{\tilde{\beta}}{\tilde{\alpha}}}存在,则\lim{\frac{\beta}{\alpha}} = \lim {\frac{\tilde{\beta}}{\tilde{\alpha}} }.

证:limβα=limββ~β~α~α~α=limβ~α~.证:\lim{\frac{\beta}{\alpha}} = \lim{\frac{\beta}{\tilde{\beta}}\cdot\frac{\tilde{\beta}}{\tilde{\alpha}}\cdot\frac{\tilde{\alpha}}{\alpha}} = \lim{\frac{\tilde{\beta}}{\tilde{\alpha}}}.

注意:等价定理说明等价无穷小只能用在相对于整个极限而言的乘除因子中,不可用在加减法中。

四、等价无穷小的充要条件

αβ的充分必要条件是β=α+o(α)\alpha \sim \beta 的充分必要条件是\beta = \alpha + o(\alpha)

五、泰勒公式

  • 1、麦克劳林公式(泰勒公式的特殊情形) f(x)=f(0)+f(0)x+f(0)2!x2+f(0)3!x3+......+f(n)(0)n!xn+o(xn)f(x) = f(0) + {f}'(0)x + \frac{{f}''(0)}{2!}x^2 + \frac{{f}''(0)}{3!}x^3 + ...... + \frac{{f}^{(n)}(0)}{n!}{x}^n + o(x^n)
  • 2、九个常见的泰勒公式 (1)f(x)=sinx=x16x3+o(x3)f(x) = \sin x = x - \frac{1}{6}x^3 + o(x^3) (2)f(x)=cosx=112x2+124x4+o(x4)f(x) = \cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4) (3)f(x)=tanx=x+13x3+o(x3)f(x) = \tan x = x + \frac{1}{3}x^3+o(x^3) (4)f(x)=arcsinx=x+16x3+o(x3)f(x) = \arcsin x = x + \frac{1}{6}x^3 + o(x^3) (5)f(x)=arctanx=x13x3+o(x3)f(x) = \arctan x = x - \frac{1}{3}x^3 + o(x^3) (6)f(x)=ex=1+x+12x2+16x3+o(x3)f(x) = e ^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3) (7)f(x)=ln(1+x)=x12x2+13x3+o(x3)f(x) = \ln (1 + x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3) (8)f(x)=11x=1+x+x2+x3+o(x3)f(x) = \frac{1}{1 - x} = 1 + x + x ^2 + x^3 + o(x^3) (9)f(x)=(1+x)α=1+αx+α(α1)2!x2+α(α1)(α2)3!x3+o(x3)f(x) = (1 + x)^\alpha = 1 + \alpha x +\frac{ \alpha (\alpha - 1)}{2!}x^2 + \frac{\alpha (\alpha - 1) (\alpha - 2)}{3!}x^3+o(x^3)

六、极限运算法则

  • 定理1:有限个无穷小的和也是无穷小

  • 定理2:有界函数与无穷小的乘积是无穷小

  • 推论1:常数与无穷小的乘积是无穷小

  • 推论2:有限个无穷小的乘积是无穷小

  • 定理3:如果limf(x)=A,limg(x)=B\lim f(x) = A, \lim g(x) = B,那么 (1)lim[f(x)±limg(x)]=A±B\lim[f(x) \pm \lim g(x)] = A \pm B

    (2)lim[f(x)g(x)]=limf(x)limg(x)=ABlim[f(x) \cdot g(x)] = \lim f(x) \cdot \lim g(x) = A \cdot B

    (3)若又有B0,limf(x)g(x)=limf(x)limg(x)=AB\neq 0, 则\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B}

    (4)若又有A,B不全为0,则limf(x)g(x)=AB\lim f(x)^{g(x)} = A^{B}

  • 推论3:如果limf(x)存在,c为常数,lim[cf(x)]=climf(x).\lim f(x)存在,而c为常数,则\lim [cf(x)] = c \lim f(x).

  • 推论4:如果limf(x)存在,n为正整数,lim[f(x)]n=[limf(x)]n.\lim f(x)存在,而n为正整数,则\lim {[f(x)]}^n = {[\lim f(x)]}^n.

  • 推论5(抓大头):

(1)limPm(x)Qn(x)=limxa0+a1x+a2x2+...+amxmb0+b1x+b2x2+...+bnxn={0,m<nambn,m=n,m>n.(1)\lim \frac{P_m(x)}{Q_n(x)} = \lim_{x\to\infty}\frac{a_0 + a_1x + a_2x^2 + ... + a_m x^m}{b_0+b_1x+b_2x^2+...+b_nx^n} = \left\{\begin{matrix} 0, m \lt n \\ \frac{a_m}{b_n} , m = n\\ \infty, m \gt n. \end{matrix}\right.
(2)limx0αm(x)βn(x)=limx0αmxm+o(xm)bnxn+o(xn)={,m<n,ambn,m=n,am,bn均不为零.0,m>n.(2)\lim_{x \to 0}\frac{\alpha_m(x)}{\beta_n(x)} = \lim_{x\to0}\frac{\alpha_mx^m + o(x^m)}{b_nx^n + o(x^n)} = \left\{\begin{matrix} \infty, m \lt n,\\ \frac{a_m}{b_n}, m = n, a_m,b_n均不为零.\\ 0, m \gt n. \end{matrix}\right.
  • 定理4:(复合函数的极限运算法则)设函数y = f[g(x)]是由函数u = g(x) 与函数y = f(u)复合而成,f(g(x))在点x_0的某去心邻域内有定义,若limxx0g(x)=u0,limuu0f(u)=A\lim_{x\to{x_0}}g(x) = u_0,\lim_{u\to{u_0}}f(u) = A,且存在 δ0>0\delta_0 \gt 0,当xϵUo(x0,u0),g(x)u0\epsilon \stackrel{o}{U}(x_0, u_0)时,有g(x)\neq u_0, limxx0f[g(x)]则\lim_{x\to x_0}f[g(x)] = limuu0f(u)=A.\lim_{u\to u_0}f(u) = A.
定理5:洛必达法则

(1)limxx0f(x)g(x)00型或.\lim_{x \to x_0} \frac{f(x)}{g(x)}为\frac{0}{0}型或\frac{\infty}{\infty}型. (2)x=x0在x=x_0的某去心邻域内,函数f(x),g(x)可导且g(x)0.{g}'(x)\neq0. (3)limxx0f(x)g(x)存在或为无穷大.\lim_{x\to x0}\frac{{f}'(x)}{{g}'(x)}存在或为无穷大.

七、函数极限通法

求解极限的步骤:
  • (1)代入x的极限值,分析极限的类型和可使用的化简

  • (2)化简:

  • 1、根式有理化

  • 2、提(约)公因子

  • 3、计算非零因子

  • 4、等价无穷小替换

  • 5、拆分极限存在的项

  • 6、变量替换(尤其是倒代换)

  • 7、幂指函数指数化 (3) 求值:

  • 1、洛必达法则

  • 2、泰勒公式

2、函数求导数

一、导数的定义

1、函数变化率

(1)f(x0)=limΔx0f(x0+Δx)f(x0)Δx{f}'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}

(2)f(x0)=limxx0f(x+x0)f(x0)xx0{f}'(x_0) = \lim_{x \to x_0}\frac{f(x+x_0) - f(x_0)}{x - x_0}

2、导数的几何意义
  • (1)切线的斜率

  • (2)切线方程: yf(x0)=f(x0)(xx0)y - f(x_0) = {f}'(x_0)(x - x_0)

  • (3)法线方程: yf(x0)=1f(x0)(xx0)y - f(x_0) = -\frac{1}{{f}'(x_0)}(x - x_0)

二、各类函数求导

  • 1、基本求导公式与四则运算
  • 2、复合函数求导
  • 3、隐函数求导
  • 4、参数方程求导
  • 5、反函数求导
  • 6、高阶导数

定积分

一、定积分的性质
1、线性性质

(1) ab[f(x)+g(x)]dx=abf(x)dx=abg(x)dx\int_{a}^{b}[f(x) + g(x)]\mathrm{d}x = \int_{a}^{b}f(x) \mathrm{d} x = \int_{a}^{b}g(x) \mathrm{d} x

(2)abf(x)dx=acf(x)dx+cbf(x)dx\int_{a}^{b} f(x)\mathrm{d}x= \int_{a}^{c} f(x)\mathrm{d}x+ \int_{c}^{b}f(x)\mathrm{d}x

2、不等式性质

(1)f(x)g(x)f(x)g(x),abf(x)dx<abg(x)dx(1)若f(x)\le g(x) 且f(x)\neq g(x),则\int_{a}^{b}f(x)\mathrm{d}x \lt \int_{a}^{b}g(x)\mathrm{d}x (2)mf(x)M,m(ba)abf(x)dxM(ba).(2)若m \le f(x) \le M, 则m(b - a) \le \int_{a}^{b}f(x)\mathrm{d}x \le M(b - a).

(3)积分中值定理:abf(x)dx=f(ξ)(ba),ξε[a,b](3)积分中值定理:\int_{a}^{b}f(x)\mathrm{d}x = f(\xi)\cdot(b - a) , \xi \varepsilon \left[ a, b\right ]

(4)abf(x)dxabf(x)dx(4)\left | \int_{a}^{b} f(x)\mathrm{d}x\right| \le \int_{a}^{b} \left| f(x)\right|\mathrm{d} x

3、对称性

(1)f(x)为偶函数,aaf(x)dx=20af(x)dx(1) 若f(x)为偶函数,则\int_{-a}^{a}f(x)\mathrm{d}x = 2\cdot\int_{0}^{a}f(x)\mathrm{d} x

(2)f(x)为奇函数,aaf(x)dx=0.(2) 若 f(x)为奇函数,则\int_{-a}^{a}f(x)\mathrm{d}x = 0.

二、定积分的计算

1、牛顿莱布尼茨公式

abf(x)dx=F(x)ab=F(b)F(a)\int_{a}^{b}f(x)\mathrm{d}x = \left .F(x)\right|_{a}^{b} = F(b) - F(a)

2、定积分的换元法
3、定积分的分部积分法
4、区间在现公式:
abf(x)dxx=a+btabf(a+bt)dt=abf(a+bx)dx=12ab[f(x)+f(a+bx]dx\int_{a}^{b}f(x)\mathrm{d}x \underline{\underline{x = a + b - t}} \int_{a}^{b}f(a +b - t)\mathrm{d}t = \int_{a}^{b}f(a + b - x) \mathrm{d}x = \frac{1}{2}\int_{a}^{b}\left[ f(x) + f(a + b - x \right]\mathrm{d}x
5、华里士公式

三、不定积分

一、不定积分的概念与基本积分公式
1、概念

f(x)dx=F(x)+C\int f(x) \mathrm{d}x = F(x) + C

2、基本积分公式

(1)C=0(1){C}' = 0

(2)0dx=C(2)\int 0 \mathrm{d}x = C

(3)(xα)=αxα1(3){(x ^ \alpha)}' = \alpha x^{\alpha - 1}

(4)xα1dx=1αxa+c(4)\int x^{\alpha - 1}\mathrm{d}x =\frac{1}{\alpha}\cdot x^a +c

(5)sinx=cosx(5){\sin}'x = \cos x

(6)cosxdx=sinx+c(6)\int \cos x \mathrm{d}x = \sin x + c

(7)cosx=sinx(7){\cos }' x = -\sin x

(8)sinxdx=cosx+c(8)\int \sin x \mathrm{d}x = -\cos x + c

(9)tanx=sec2x(9){\tan}' x = {\sec} ^ 2 x

(10)sec2xdx=tanx+c(10)\int {\sec }^2 x \mathrm{d}x = \tan x + c

(11)(cotx)=csc2x(11){(\cot x)}' = -{\csc } ^ 2 x

(12)csc2xdx=cotx+c(12)\int {\csc}^2 x \mathrm{d}x = -\cot x + c

(13)(secx)=secxtanx(13){(\sec x)}' = \sec x \cdot \tan x

(14)secxtanxdx=secx+c(14)\int \sec x \cdot \tan x \mathrm{d}x = \sec x + c

(15)(cscx)=cscxcotx(15){(\csc x)}' = -\csc x \cdot \cot x

(16)cscxcotxdx=cscx+c(16)\int \csc x \cdot \cot x \mathrm{d}x = -\csc x + c

(17)lnx=1x(17){\ln \left | x\right |}' = \frac{1}{x}

(18)1x=lnx+c(18)\int \frac{1}{x} = \ln \left | x \right | + c

(19)(ax)=axlna(a>0,a1)(19){(a ^x)}' = a ^ x \cdot \ln a(a \gt 0, a \neq 1)

(20)axdx=1lnaax+c(a>0,a1)(20)\int a ^x \mathrm {d}x = \frac{1}{\ln a} a^x + c (a \gt 0, a \neq 1)

(21)(ex)=ex(21){(e ^ x)}' = e ^ x

(22)exdx=ex+c(22)\int e ^x \mathrm {d}x = e ^x + c

(23)(arcsinx)=11x2(23){(\arcsin x)}' = \frac{1}{\sqrt{1 - x^2}}

(24)11x2dx=arcsinx+c(24)\int\frac{1}{\sqrt{1 - x ^ 2}}\mathrm{d}x = \arcsin x + c

(25)(arctanx)=11+x2(25){(\arctan x)}' = \frac{1}{1 + x ^ 2}

(26)11+x2dx=arctanx+c(26)\int \frac{1}{1 + x^2}\mathrm{d}x = \arctan x + c

(27)(lnx+x2+a)=1x2+a(27){(\ln \left | x + \sqrt{x ^ 2 + a}\right | )}' = \frac{1}{\sqrt{x ^ 2 + a}}

(28)1x2+a=lnx+x2+a+c(28)\int\frac{1}{\sqrt{x ^ 2 + a}} = \ln \left| x + \sqrt{x ^ 2 + a}\right| + c

二、四大积分方法

  • 1、第一类换元法(凑微分)

  • 2、第二类换元法(去根号)

  • 3、分部积分法

  • 4、有理函数积分法

三、三角有理函数积分