一、循环依赖介绍
1.1 什么是循环依赖?
类A依赖类B,类B也依赖类A。像这样类与类之间的依赖关系形成了闭环,就会导致循环依赖问题的产生。
1.2 Spring中主要有哪几种循环依赖问题?
- 通过构造方法进行依赖注入时产生的循环依赖问题。
- 通过setter方法进行依赖注入且是在多例(原型)模式下产生的循环依赖问题。
- 通过setter方法进行依赖注入且是在单例模式下产生的循环依赖问题。
注意:
在Spring中,只有【第三种方式】的循环依赖问题被解决了,其他两种方式在遇到循环依赖问题时都会产生异常。
二、Spring怎么解决循环依赖的?
singletonObjects:一级缓存,存放**完全初始化好的Bean(填充属性完成,初始化完成)**的集合,从这个集合中取出来的Bean可以立马返回earlySingletonObjects:二级缓存,存放**半成品的单实例Bean(已实例化但未注入属性和初始化)**的集合,它用来解决循环依赖singletonFactories:三级缓存,存放**Bean工厂对象(仅仅只实例化完成)**的集合singletonsCurrentlyInCreation:存放正在被创建的Bean的集合
Spring解决循环依赖的核心思想在于提前曝光:
- 通过构建函数创建A对象(A对象是半成品,还没注入属性和调用init方法)。
- A对象需要注入B对象,发现缓存里还没有B对象,将半成品对象A放入半成品缓存。
- 通过构建函数创建B对象(B对象是半成品,还没注入属性和调用init方法)。
- B对象需要注入A对象,从半成品缓存里取到半成品对象A。
- B对象继续注入其他属性和初始化,之后将完成品B对象放入完成品缓存。
- A对象继续注入属性,从完成品缓存中取到完成品B对象并注入。
- A对象继续注入其他属性和初始化,之后将完成品A对象放入完成品缓存。
2.1 伪代码:
初始化方法
public interface SmallInitializingBean {
void afterPropertiesSet();
}
Object工厂
@FunctionalInterface
public interface SmallObjectFactory<T> {
T getObject() throws BeansException;
}
创建Bean方法
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
public class SmallAbstractBeanFactory {
// 一级缓存
private static final Map<String, Object> singletonObjects = new ConcurrentHashMap<>(256); //一级缓存
// 二级缓存
private static final Map<String, Object> earlySingletonObjects = new HashMap<>(16);
// 三级缓存
private static final Map<String, SmallObjectFactory<?>> singletonFactories = new HashMap<>(16);
//正在创建的Bean
private static final Set<String> singletonsCurrentlyInCreation =
Collections.newSetFromMap(new ConcurrentHashMap<>(16));
public static <T> T getBean(String name,Class<T> requiredType){
Object bean = getSingleton(name, true);
if (bean == null ){
bean = doCreateBean(name,requiredType);
}
return (T) bean;
}
protected static Object doCreateBean(String beanName,Class cls) {
singletonsCurrentlyInCreation.add(beanName);
//第一步、实例化Bean
Object bean = createBeanInstance(beanName,cls);
//第二步、放入三级缓存
addSingletonFactory(beanName,() -> getEarlyBeanReference(beanName,bean));
//第三步、赋值属性
populateBean(beanName,bean);
//第四步、初始化Bean
initializeBean(bean);
//第五步、 代理等 ----
singletonsCurrentlyInCreation.remove(beanName);
//最后添加进单例缓存
addSingleton(beanName,bean);
return bean;
}
private static Object createBeanInstance(String beanName, Class cls) {
Object ins = null;
try {
ins = cls.newInstance();
} catch (Exception e) {
e.printStackTrace();
}
return ins;
}
protected static void addSingletonFactory(String beanName, SmallObjectFactory<?> singletonFactory) {
System.out.println("第二步:放入三级缓存 "+beanName);
synchronized (singletonObjects) {
if (!singletonObjects.containsKey(beanName)) {
singletonFactories.put(beanName, singletonFactory);
earlySingletonObjects.remove(beanName);
}
}
}
protected static void populateBean(String beanName,Object bean){
System.out.println("第三步:属性赋值 SmallStudent");
//这里赋值只是举例,真正Spring在赋值的时候会有很多操作:名称注入 类型注入 @Resource、@Autowired、@Value自动注入等
if ("smallTeacher".equals(beanName)){
((SmallTeacher)bean).setName("教师");
((SmallTeacher) bean).setStudent(getBean("smallStudent",SmallStudent.class));
}
if ("smallStudent".equals(beanName)){
((SmallStudent)bean).setName("学生");
((SmallStudent)bean).setTeacher(getBean("smallTeacher",SmallTeacher.class));
}
}
protected static Object initializeBean(Object bean){
//做一些初始化操作
//例如:
if (bean instanceof SmallInitializingBean){
((SmallInitializingBean)bean).afterPropertiesSet();
}
return bean;
}
protected static Object getSingleton(String beanName, boolean allowEarlyReference) {
Object singletonObject = singletonObjects.get(beanName);
if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
singletonObject = earlySingletonObjects.get(beanName);
if (singletonObject == null && allowEarlyReference) {
synchronized (singletonObjects) {
// Consistent creation of early reference within full singleton lock
singletonObject = singletonObjects.get(beanName);
if (singletonObject == null) {
singletonObject = earlySingletonObjects.get(beanName);
if (singletonObject == null) {
SmallObjectFactory<?> singletonFactory = singletonFactories.get(beanName);
if (singletonFactory != null) {
singletonObject = singletonFactory.getObject();
earlySingletonObjects.put(beanName, singletonObject);
singletonFactories.remove(beanName);
}
}
}
}
}
}
return singletonObject;
}
public static boolean isSingletonCurrentlyInCreation(String beanName) {
return singletonsCurrentlyInCreation.contains(beanName);
}
protected static Object getEarlyBeanReference(String beanName, Object bean) {
Object exposedObject = bean;
System.out.println("做一次早期代理判断:是否需要创建代理对象");
return exposedObject;
}
protected static void addSingleton(String beanName, Object singletonObject) {
synchronized (singletonObjects) {
singletonObjects.put(beanName, singletonObject);
singletonFactories.remove(beanName);
earlySingletonObjects.remove(beanName);
}
}
}
测试类
public class SmallStudent implements SmallInitializingBean{
private String name;
private SmallTeacher teacher;
public SmallStudent() {
System.out.println("第一步:实例化Bean SmallStudent");
}
@Override
public void afterPropertiesSet(){
System.out.println("第四步:执行初始化方法 SmallStudent");
}
public SmallTeacher getTeacher() {
return teacher;
}
public void setTeacher(SmallTeacher teacher) {
this.teacher = teacher;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@Override
public String toString() {
return "SmallStudent{" +
"name='" + name + ''' +
", teacher=" + teacher.getName() +
'}';
}
}
public class SmallTeacher implements SmallInitializingBean{
private String name;
private SmallStudent student;
public SmallTeacher() {
System.out.println("第一步:实例化Bean SmallTeacher");
}
@Override
public void afterPropertiesSet(){
System.out.println("第四步:执行初始化方法 SmallTeacher");
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public SmallStudent getStudent() {
return student;
}
public void setStudent(SmallStudent student) {
this.student = student;
}
@Override
public String toString() {
return "SmallTeacher{" +
"name='" + name + ''' +
", student=" + student.getName() +
'}';
}
}
执行测试结果
public class SmallTest {
public static void main(String[] args) {
Object student = SmallAbstractBeanFactory.getBean("smallStudent",SmallStudent.class);
System.out.println(student.toString());
Object teacher = SmallAbstractBeanFactory.getBean("smallTeacher",SmallTeacher.class);
System.out.println(teacher.toString());
}
}
三、源码分析
3.流程全分析 - 初始化Student
由上面的 getBean,跳转到 AbstractBeanFactory 的 getBean 方法:
public Object getBean(String name) throws BeansException {
return doGetBean(name, null, null, false);
}
3.1 doGetBean(student)
protected <T> T doGetBean(final String name, @Nullable final Class<T> requiredType,
@Nullable final Object[] args, boolean typeCheckOnly) throws BeansException {
// ......
// Create bean instance.
if (mbd.isSingleton()) {
sharedInstance = getSingleton(beanName, () -> {
try {
return createBean(beanName, mbd, args);
}
catch (BeansException ex) {
// Explicitly remove instance from singleton cache: It might have been put there
// eagerly by the creation process, to allow for circular reference resolution.
// Also remove any beans that received a temporary reference to the bean.
destroySingleton(beanName);
throw ex;
}
});
bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
}
// ......
return (T) bean;
}
在Lambda表达式中要调用 createBean ,但在调用之前先看一眼 getSingleton 方法:
3.2 【重要】getSingleton
public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {
// ......
// 标记当前bean
beforeSingletonCreation(beanName);
// .....
try {
// 创建Bean
singletonObject = singletonFactory.getObject();
newSingleton = true;
}
// ......
}
beforeSingletonCreation 方法咱之前看过了:
protected void beforeSingletonCreation(String beanName) {
if (!this.inCreationCheckExclusions.contains(beanName) && !this.singletonsCurrentlyInCreation.add(beanName)) {
throw new BeanCurrentlyInCreationException(beanName);
}
}
它把当前的 student 放入 singletonsCurrentlyInCreation **(正在创建的Bean)**中。
接下来准备调用 singletonFactory.getObject() ,也就是调用下面的 createBean 方法:
3.3 createBean(student)
// AbstractAutowireCapableBeanFactory
protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
throws BeanCreationException {
// ......
try {
Object beanInstance = doCreateBean(beanName, mbdToUse, args);
if (logger.isTraceEnabled()) {
logger.trace("Finished creating instance of bean '" + beanName + "'");
}
return beanInstance;
}
// ......
}
最终调到 doCreateBean 方法:
3.4 doCreateBean(student) & createBeanInstance
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args)
throws BeanCreationException {
// ......
// 创建Bean实例
if (instanceWrapper == null) {
instanceWrapper = createBeanInstance(beanName, mbd, args);
}
// ......
// Eagerly cache singletons to be able to resolve circular references
// even when triggered by lifecycle interfaces like BeanFactoryAware.
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {
if (logger.isTraceEnabled()) {
logger.trace("Eagerly caching bean '" + beanName +
"' to allow for resolving potential circular references");
}
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
}
// ......
Object exposedObject = bean;
try {
// 属性赋值&自动注入
populateBean(beanName, mbd, instanceWrapper);
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
//......
return exposedObject;
}
中间有一个非常关键的步骤:earlySingletonExposure 的判断。
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args)
throws BeanCreationException {
// ......
// Eagerly cache singletons to be able to resolve circular references
// even when triggered by lifecycle interfaces like BeanFactoryAware.
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {
if (logger.isTraceEnabled()) {
logger.trace("Eagerly caching bean '" + beanName +
"' to allow for resolving potential circular references");
}
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
}
// ......
}
3.5 earlySingletonExposure的判断 & addSingletonFactory
这个判断非常关键,它要同时成立三个条件才能进if结构:
- 这个Bean是一个单实例Bean
- IOC容器允许循环依赖(默认是true)
- 正在创建的单实例Bean对象中有当前的这个Bean
由于在3.2环节中,singletonsCurrentlyInCreation 这个集合中已经把 student 放进去了,此时这个判断也为true。
三个条件全为true,进入if结构中,它干了这么一件事:
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
来看 addSingletonFactory 的源码:
protected void addSingletonFactory(String beanName, ObjectFactory<?> singletonFactory) {
Assert.notNull(singletonFactory, "Singleton factory must not be null");
synchronized (this.singletonObjects) {
if (!this.singletonObjects.containsKey(beanName)) {
this.singletonFactories.put(beanName, singletonFactory);
this.earlySingletonObjects.remove(beanName);
this.registeredSingletons.add(beanName);
}
}
}
这一步的动作可以看出来,是将当前正在创建的Bean保存到三级缓存中,并从二级缓存中移除(由于本来二级缓存中没有,故可以只认定为放入三级缓存)。
下面的属性赋值&自动注入点:
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args)
throws BeanCreationException {
// ......
try {
// 属性赋值&自动注入
populateBean(beanName, mbd, instanceWrapper);
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
//......
return exposedObject;
}
3.6 populateBean(student)
protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) {
// ......
PropertyDescriptor[] filteredPds = null;
if (hasInstAwareBpps) {
if (pvs == null) {
pvs = mbd.getPropertyValues();
}
for (BeanPostProcessor bp : getBeanPostProcessors()) {
if (bp instanceof InstantiationAwareBeanPostProcessor) {
InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
PropertyValues pvsToUse = ibp.postProcessProperties(pvs, bw.getWrappedInstance(), beanName);
if (pvsToUse == null) {
if (filteredPds == null) {
filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching);
}
pvsToUse = ibp.postProcessPropertyValues(pvs, filteredPds, bw.getWrappedInstance(), beanName);
if (pvsToUse == null) {
return;
}
}
pvs = pvsToUse;
}
}
}
//......
}
在这个 InstantiationAwareBeanPostProcessor 的for循环中,会调用
AutowiredAnnotationBeanPostProcessor 的 postProcessProperties 方法,触发自动注入。
3.7 AutowiredAnnotationBeanPostProcessor#postProcessProperties
public PropertyValues postProcessProperties(PropertyValues pvs, Object bean, String beanName) {
InjectionMetadata metadata = findAutowiringMetadata(beanName, bean.getClass(), pvs);
try {
metadata.inject(bean, beanName, pvs);
}
catch (BeanCreationException ex) {
throw ex;
}
catch (Throwable ex) {
throw new BeanCreationException(beanName, "Injection of autowired dependencies failed", ex);
}
return pvs;
}
在上面收集好要注入的属性后,下面的 metadata.inject 方法:
3.8 【注入】metadata.inject
跳转到 AutowiredFieldElement#inject 中:
protected void inject(Object bean, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable {
Field field = (Field) this.member;
Object value;
// ......
try {
value = beanFactory.resolveDependency(desc, beanName, autowiredBeanNames, typeConverter);
}
// ......
if (value != null) {
ReflectionUtils.makeAccessible(field);
field.set(bean, value);
}
}
一开始初始化的时候肯定找不到 Teacher ,要走 beanFactory.resolveDependency 方法:
3.9 beanFactory.resolveDependency
此时跳转到 DefaultListableBeanFactory 类中:
public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
descriptor.initParameterNameDiscovery(getParameterNameDiscoverer());
// if-else ......
else {
Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary(
descriptor, requestingBeanName);
if (result == null) {
result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);
}
return result;
}
}
来到最后的 doResolveDependency 方法中:
3.10 doResolveDependency
public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
// try ......
if (instanceCandidate instanceof Class) {
instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this);
}
// ......
}
Debug走到这一步,跳转进去的方法就是 getBean:
4. 流程全分析 - 初始化Teacher
4.1 getBean(teacher)
public Object resolveCandidate(String beanName, Class<?> requiredType, BeanFactory beanFactory)
throws BeansException {
return beanFactory.getBean(beanName);
}
继续往下走,回到 AbstractBeanFactory 了:
4.2 doGetBean(teacher) - getSingleton(teacher)
与上面的思路类似,不再贴源码,当执行到getSingleton方法时,要知道 beforeSingletonCreation 方法又执行了,此时正在创建的Bean有两个
4.3 createBean(teacher) - doCreateBean(teacher) -> addSingletonFactory
这几步操作最终完成的动作:将teacher放入三级缓存,并从二级缓存中移除。
4.4 populateBean(teacher)
跟上面一样,也是同样的执行后置处理器,走inject方法。
4.5 metadata.inject - resolveDependency - doResolveDependency
最终也会像上面一样,执行到这一步:
public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
// try ......
if (instanceCandidate instanceof Class) {
instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this);
}
// ......
}
进去会调getBean(student)。
4.6 再次getBean(student)
其实这里进的还是我们熟悉的那个getBean:
public Object getBean(String name) throws BeansException {
return doGetBean(name, null, null, false);
}
下面还是那一套,不过进入 doGetBean 方法后有一个很重要的环节:getSingleton
4.7 【二次获取】getSingleton(student)
protected Object getSingleton(String beanName, boolean allowEarlyReference) {
Object singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
synchronized (this.singletonObjects) {
singletonObject = this.earlySingletonObjects.get(beanName);
if (singletonObject == null && allowEarlyReference) {
ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
if (singletonFactory != null) {
singletonObject = singletonFactory.getObject();
this.earlySingletonObjects.put(beanName, singletonObject);
this.singletonFactories.remove(beanName);
}
}
}
}
return singletonObject;
}
注意在这里第二次获取 student 的时候,由于现在 正在被创建的Bean 中有 student 了,所以 isSingletonCurrentlyInCreation(student) 将返回true!会进入到下面的if结构体中!
进入之后,它要确定 earlySingletonObjects 二级缓存 中是否有当前创建好但没有赋值初始化的Bean(当前student),此时根据前面的步骤,teacher和student均只在三级缓存,所以取出的 singletonObject 为null,进入第二层if的结构体中。再往下来,它又从 singletonFactories 三级缓存 中取当前正在创建的Bean(student),这次可以查到,于是进入第三层if的结构体。它干了两件事:将这个 student 放入二级缓存,并从三级缓存中移除。
那既然这里已经获取到了,那 singletonObject 自然有值,就可以正常返回那个 正在创建,但还没有注入依赖项的student 。
4.8 回到doGetBean(student)
Object sharedInstance = getSingleton(beanName);
if (sharedInstance != null && args == null) {
// log ......
bean = getObjectForBeanInstance(sharedInstance, name, beanName, null);
}
获取到 student 后,下面会调用一个 getObjectForBeanInstance 方法:
4.9 getObjectForBeanInstance(student)
private final NamedThreadLocal<String> currentlyCreatedBean = new NamedThreadLocal<>("Currently created bean");
protected Object getObjectForBeanInstance(
Object beanInstance, String name, String beanName, @Nullable RootBeanDefinition mbd) {
String currentlyCreatedBean = this.currentlyCreatedBean.get();
if (currentlyCreatedBean != null) {
registerDependentBean(beanName, currentlyCreatedBean);
}
return super.getObjectForBeanInstance(beanInstance, name, beanName, mbd);
}
这里先通过 this.currentlyCreatedBean.get() 取到当前线程中正在创建的Bean的名称,发现为null(到目前为止也没发现谁在操作它,通过IDEA的提示,发现是 obtainFromSupplier 方法中有对它的操作,之前提过了我们不关心它),则直接调父类的 getObjectForBeanInstance 方法:
4.10 AbstractBeanFactory#getObjectForBeanInstance(student)
protected Object getObjectForBeanInstance(
Object beanInstance, String name, String beanName, @Nullable RootBeanDefinition mbd) {
// Don't let calling code try to dereference the factory if the bean isn't a factory.
// 如果Bean不是工厂,则不要让调用代码尝试取消引用工厂
if (BeanFactoryUtils.isFactoryDereference(name)) {
if (beanInstance instanceof NullBean) {
return beanInstance;
}
if (!(beanInstance instanceof FactoryBean)) {
throw new BeanIsNotAFactoryException(beanName, beanInstance.getClass());
}
}
// Now we have the bean instance, which may be a normal bean or a FactoryBean.
// If it's a FactoryBean, we use it to create a bean instance, unless the
// caller actually wants a reference to the factory.
if (!(beanInstance instanceof FactoryBean) || BeanFactoryUtils.isFactoryDereference(name)) {
return beanInstance;
}
// ......
}
第一段if中,因为 student 不是被工厂引用的Bean,这部分不进入。
第二段if中,因为 student 不是一个工厂Bean,前半段返回true,直接返回student。
这段方法走完后,student还是那个student。
回到doGetBean方法:
4.11 再回到doGetBean(student)
// Check if required type matches the type of the actual bean instance.
// 检查所需的类型是否与实际bean实例的类型匹配
if (requiredType != null && !requiredType.isInstance(bean)) {
// ......
}
return (T) bean;
这一段if判断是确定bean与返回的类型是否一致,这里很明显一致,直接强转返回即可。
4.12 回到注入的部分(teacher)
public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
// ......
if (instanceCandidate instanceof Class) {
instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this);
}
Object result = instanceCandidate;
if (result instanceof NullBean) {
if (isRequired(descriptor)) {
raiseNoMatchingBeanFound(type, descriptor.getResolvableType(), descriptor);
}
result = null;
}
if (!ClassUtils.isAssignableValue(type, result)) {
throw new BeanNotOfRequiredTypeException(autowiredBeanName, type, instanceCandidate.getClass());
}
return result;
}
finally {
ConstructorResolver.setCurrentInjectionPoint(previousInjectionPoint);
}
}
descriptor.resolveCandidate 方法执行完后,下面把bean交给result,确定没问题,返回出去。
4.13 回到resolveDependency(teacher)
public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
// if-else ......
else {
Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary(
descriptor, requestingBeanName);
if (result == null) {
result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);
}
return result;
}
}
这个方法也就成功返回student了。
4.14 返回inject方法(student)
protected void inject(Object bean, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable {
// ......
try {
value = beanFactory.resolveDependency(desc, beanName, autowiredBeanNames, typeConverter);
}
// ......
}
if (value != null) {
ReflectionUtils.makeAccessible(field);
field.set(bean, value);
}
}
取到value,也就是那个student的Bean后,最底下利用反射赋值,自动注入结束
4.15 回到doCreateBean(teacher)
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args)
throws BeanCreationException {
// ......
Object exposedObject = bean;
try {
populateBean(beanName, mbd, instanceWrapper);
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
//......
return exposedObject;
}
teacher的属性赋值和自动注入完成后,执行初始化方法(没定义),最后返回出去。
4.16 回到createBean(teacher)
protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
throws BeanCreationException {
// ......
try {
Object beanInstance = doCreateBean(beanName, mbdToUse, args);
// log ......
return beanInstance;
}
// ......
}
也是直接返回出去。
4.17 回到DefaultSingletonBeanRegistry#getSingleton(teacher)
public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {
// ......
try {
singletonObject = singletonFactory.getObject();
newSingleton = true;
}
// catch ......
finally {
if (recordSuppressedExceptions) {
this.suppressedExceptions = null;
}
afterSingletonCreation(beanName);
}
if (newSingleton) {
addSingleton(beanName, singletonObject);
}
}
return singletonObject;
}
}
createBean 返回后回到Lambda表达式,又回到 getSingleton 方法中。创建的这个单实例Teacher会被 newSingleton 标记为true,在下面的finally块中,要执行两个重要的方法:afterSingletonCreation 和 addSingleton :
4.18 afterSingletonCreation
protected void afterSingletonCreation(String beanName) {
if (!this.inCreationCheckExclusions.contains(beanName) && !this.singletonsCurrentlyInCreation.remove(beanName)) {
throw new IllegalStateException("Singleton '" + beanName + "' isn't currently in creation");
}
}
这部分的作用:将创建好的Bean从“正在创建中的Bean”中移除。
4.19 【重要】addSingleton
protected void addSingleton(String beanName, Object singletonObject) {
synchronized (this.singletonObjects) {
this.singletonObjects.put(beanName, singletonObject);
this.singletonFactories.remove(beanName);
this.earlySingletonObjects.remove(beanName);
this.registeredSingletons.add(beanName);
}
}
这部分的作用:将创建的这个Bean放入一级缓存,从二级缓存和三级缓存中移除,并记录已经创建了的单实例Bean。
至此,Teacher的创建完全结束。
5. 回到student的创建
5.1 回到DependencyDescriptor#resolveCandidate(student)
public Object resolveCandidate(String beanName, Class<?> requiredType, BeanFactory beanFactory)
throws BeansException {
return beanFactory.getBean(beanName);
}
这个 getBean(teacher) 结束了,真正完全创建好的Teacher也返回来了。下面的步骤就与上面一样了,快速过一遍。
5.2 返回注入的部分(student)
public Object doResolveDependency(DependencyDescriptor descriptor, @Nullable String beanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
// ......
if (instanceCandidate instanceof Class) {
// teacher
instanceCandidate = descriptor.resolveCandidate(autowiredBeanName, type, this);
}
Object result = instanceCandidate;
// ......
return result;
}
// ......
}
5.3 回到resolveDependency(student)
public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
// if-else ......
else {
Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary(
descriptor, requestingBeanName);
if (result == null) {
// teacher
result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);
}
return result;
}
}
5.4 返回inject方法(student)
protected void inject(Object bean, @Nullable String beanName, @Nullable PropertyValues pvs) throws Throwable {
// ......
try {
// teacher
value = beanFactory.resolveDependency(desc, beanName, autowiredBeanNames, typeConverter);
}
// ......
}
if (value != null) {
//缓存teacher
ReflectionUtils.makeAccessible(field);
field.set(bean, value);
}
}
5.5 回到doCreateBean(student)
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args)
throws BeanCreationException {
// ......
Object exposedObject = bean;
try {
// 自动注入完成
populateBean(beanName, mbd, instanceWrapper);
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
//......
return exposedObject;
}
5.6 回到createBean(student)
protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
throws BeanCreationException {
// ......
try {
Object beanInstance = doCreateBean(beanName, mbdToUse, args);
// log ......
// 直接返回出去了
return beanInstance;
}
// ......
}
5.7 回到DefaultSingletonBeanRegistry#getSingleton(student)
public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {
// ......
try {
singletonObject = singletonFactory.getObject();
newSingleton = true;
}
// catch ......
finally {
if (recordSuppressedExceptions) {
this.suppressedExceptions = null;
}
// 清除正在创建的缓存
afterSingletonCreation(beanName);
}
if (newSingleton) {
// 创建完student后也要调这个方法
addSingleton(beanName, singletonObject);
}
}
return singletonObject;
}
}
5.8 afterSingletonCreation
protected void afterSingletonCreation(String beanName) {
// 清除正在创建的缓存
if (!this.inCreationCheckExclusions.contains(beanName) && !this.singletonsCurrentlyInCreation.remove(beanName)) {
throw new IllegalStateException("Singleton '" + beanName + "' isn't currently in creation");
}
}
5.9 【重要】addSingleton
protected void addSingleton(String beanName, Object singletonObject) {
synchronized (this.singletonObjects) {
// 将student放入一级缓存
this.singletonObjects.put(beanName, singletonObject);
// 从二级缓存和三级缓存中移除
this.singletonFactories.remove(beanName);
this.earlySingletonObjects.remove(beanName);
// 记录已经创建了的student
this.registeredSingletons.add(beanName);
}
}
至此,Student的创建完全结束。
四、为什么需要三级缓存?二级缓存不行吗?
这实际上涉及到 AOP,如果创建的 Bean是有代理的,那么注入的就应该是代理 Bean,而不是原始的 Bean。但是 Spring一开始并不知道 Bean是否会有循环依赖,通常情况下(没有循环依赖的情况下),Spring 都会在完成填充属性,并且执行完初始化方法之后再为其创建代理。但是,如果出现了循环依赖的话,Spring 就不得不为其提前创建代理对象,否则注入的就是一个原始对象,而不是代理对象。因此,这里就涉及到应该在哪里提前创建代理对象
如果要使用二级缓存解决循环依赖,意味着Bean在构造完后就创建代理对象,这样违背了Spring设计原则。
Spring结合AOP跟Bean的生命周期,是在Bean创建完全之后通过AnnotationAwareAspectJAutoProxyCreator这个后置处理器来完成的,在这个后置处理的postProcessAfterInitialization方法中对初始化后的Bean完成AOP代理。
如果出现了循环依赖,那没有办法,只有给Bean先创建代理,但是没有出现循环依赖的情况下,设计之初就是让Bean在生命周期的最后一步完成代理而不是在实例化后就立马完成代理。
使用三级缓存创建Bean的流程
不使用三级缓存只使用二级缓存创建Bean的流程