题目
122. 买卖股票的最佳时机 II
⭐贪心法
最终利润是可以分解的,假如第0天买入,第3天卖出,那么利润为:prices[3] - prices[0]。相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。此时就是把利润分解为每天为单位的维度,而不是从0天到第3天整体去考虑!
那么根据prices可以得到每天的利润序列:(prices[i] - prices[i - 1]).....(prices[1] - prices[0])。
- 收集正利润的区间,就是股票买卖的区间,而只需要关注最终利润,不需要记录区间。
- 局部最优:收集每天的正利润,全局最优:求得最大利润。
class Solution {
public:
int maxProfit(vector<int>& prices) {
int result = 0;
for (int i = 1; i < prices.size(); i++) {
result += max(prices[i] - prices[i - 1], 0);
}
return result;
}
};
动态规划法
class Solution {
public:
int maxProfit(vector<int>& prices) {
// dp[i][1]第i天持有的最多现金
// dp[i][0]第i天持有股票后的最多现金
int n = prices.size();
vector<vector<int>> dp(n, vector<int>(2, 0));
dp[0][0] -= prices[0]; // 持股票
for (int i = 1; i < n; i++) {
// 第i天持股票所剩最多现金 = max(第i-1天持股票所剩现金, 第i-1天持现金-买第i天的股票)
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
// 第i天持有最多现金 = max(第i-1天持有的最多现金,第i-1天持有股票的最多现金+第i天卖出股票)
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return max(dp[n - 1][0], dp[n - 1][1]);
}
};
55. 跳跃游戏
贪心法
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
- i每次移动只能在cover的范围内移动,每移动一个元素,cover得到该元素数值(新的覆盖范围)的补充,让i继续移动下去。
- 而cover每次只取 max(该元素数值补充后的范围, cover本身范围)。
- 如果cover大于等于了终点下标,直接return true就可以了。
class Solution {
public:
bool canJump(vector<int>& nums) {
int cover = 0;
if (nums.size() == 1) return true; // 只有一个元素,就是能达到
for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
cover = max(i + nums[i], cover);
if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
}
return false;
}
};
45.跳跃游戏II(难)
贪心法
- 局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。
- 整体最优:一步尽可能多走,从而达到最小步数。
但真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。
从图中可以看出来,就是移动下标达到了当前覆盖的最远距离下标时,步数就要加一,来增加覆盖距离。最后的步数就是最少步数。
这里还是有个特殊情况需要考虑,当移动下标达到了当前覆盖的最远距离下标时
- 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
- 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。
class Solution {
public:
int jump(vector<int>& nums) {
if (nums.size() == 1) return 0;
int curDistance = 0; // 当前覆盖最远距离下标
int ans = 0; // 记录走的最大步数
int nextDistance = 0; // 下一步覆盖最远距离下标
for (int i = 0; i < nums.size(); i++) {
// 更新下一步覆盖最远距离下标
nextDistance = max(nums[i] + i, nextDistance);
// 遇到当前覆盖最远距离下标,否则不做操作
if (i == curDistance) {
// 如果当前覆盖最远距离下标不是终点
if (curDistance < nums.size() - 1) {
// 需要走下一步
ans++;
// 更新当前覆盖最远距离下标
curDistance = nextDistance;
// 下一步的覆盖范围已经可以达到终点,结束循环
if (nextDistance >= nums.size() - 1) break;
}
// 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
else break;
}
}
return ans;
}
};