go基础07-复合数据类型:原生map类型的实现机制是怎样的?

241 阅读7分钟

什么是 map 类型?

map 是 Go 语言提供的一种抽象数据类型,它表示一组无序的键值对。在后面的讲解中,我们会直接使用 key 和 value 分别代表 map 的键和值。而且,map 集合中每个 key 都是唯一的:

map[key_type]value_type

key 与 value 的类型可以相同,也可以不同:

如果两个 map 类型的 key 元素类型相同,value 元素类型也相同,那么我们可以说它们是同一个 map 类型,否则就是不同的 map 类型。

这里,我们要注意,map 类型对 value 的类型没有限制,但是对 key 的类型却有严格要求,因为 map 类型要保证 key 的唯一性。Go 语言中要求,key 的类型必须支持“==”和“!=”两种比较操作符。

但是,在 Go 语言中,函数类型、map 类型自身,以及切片只支持与 nil 的比较,而不支持同类型两个变量的比较。如果像下面代码这样,进行这些类型的比较,Go 编译器将会报错:

因此在这里,你一定要注意:函数类型、map 类型自身,以及切片类型是不能作为 map 的 key 类型的

map 变量的声明和初始化

var m map[string]int // 一个map[string]int类型的变量

和切片类型变量一样,如果我们没有显式地赋予 map 变量初值,map 类型变量的默认值为 nil。

不过切片变量和 map 变量在这里也有些不同。初值为零值 nil 的切片类型变量,可以借助内置的 append 的函数进行操作,这种在 Go 语言中被称为“零值可用”。定义“零值可用”的类型,可以提升我们开发者的使用体验,我们不用再担心变量的初始状态是否有效。

但 map 类型,因为它内部实现的复杂性,无法“零值可用”。所以,如果我们对处于零值状态的 map 变量直接进行操作,就会导致运行时异常(panic),从而导致程序进程异常退出:

var m map[string]int // m = nil
m["key"] = 1         // 发生运行时异常:panic: assignment to entry in nil map

所以,我们必须对 map 类型变量进行显式初始化后才能使用。那我们怎样对 map 类型变量进行初始化呢?

和切片一样,为 map 类型变量显式赋值有两种方式:一种是使用复合字面值;另外一种是使用 make 这个预声明的内置函数。

方法一:使用复合字面值初始化 map 类型变量。

m := map[int]string{}
m1 := map[int][]string{
    1: []string{"val1_1", "val1_2"},
    3: []string{"val3_1", "val3_2", "val3_3"},
    7: []string{"val7_1"},
}

type Position struct { 
    x float64 
    y float64
}

m2 := map[Position]string{
    Position{29.935523, 52.568915}: "school",
    Position{25.352594, 113.304361}: "shopping-mall",
    Position{73.224455, 111.804306}: "hospital",
}

Go 允许省略字面值中的元素类型。

m2 := map[Position]string{
    {29.935523, 52.568915}: "school",
    {25.352594, 113.304361}: "shopping-mall",
    {73.224455, 111.804306}: "hospital",
}

方法二:使用 make 为 map 类型变量进行显式初始化。

m1 := make(map[int]string) // 未指定初始容量
m2 := make(map[int]string, 8) // 指定初始容量为8

map 的基本操作

操作一:插入新键值对。

m := make(map[int]string)
m[1] = "value1"
m[2] = "value2"
m[3] = "value3"
m := map[string]int {
  "key1" : 1,
  "key2" : 2,
}

m["key1"] = 11 // 11会覆盖掉"key1"对应的旧值1
m["key3"] = 3  // 此时m为map[key1:11 key2:2 key3:3]

操作二:获取键值对数量。

m := map[string]int {
  "key1" : 1,
  "key2" : 2,
}

fmt.Println(len(m)) // 2
m["key3"] = 3  
fmt.Println(len(m)) // 3

不过,这里要注意的是我们不能对 map 类型变量调用 cap,来获取当前容量,这是 map 类型与切片类型的一个不同点。

操作三:查找和数据读取

m := make(map[string]int)
v := m["key1"]

当我们尝试去获取一个键对应的值的时候,如果这个键在 map 中并不存在,我们也会得到一个值,这个值是 value 元素类型的零值

m := make(map[string]int)
v, ok := m["key1"]
if !ok {
    // "key1"不在map中
}

// "key1"在map中,v将被赋予"key1"键对应的value

,如果我们并不关心某个键对应的 value,而只关心某个键是否在于 map 中,我们可以使用空标识符替代变量 v,忽略可能返回的 value:

m := make(map[string]int)
_, ok := m["key1"]
... ...

操作四:删除数据。

m := map[string]int {
  "key1" : 1,
  "key2" : 2,
}

fmt.Println(m) // map[key1:1 key2:2]
delete(m, "key2") // 删除"key2"
fmt.Println(m) // map[key1:1]

delete 函数是从 map 中删除键的唯一方法。即便传给 delete 的键在 map 中并不存在,delete 函数的执行也不会失败,更不会抛出运行时的异常。

操作五:遍历 map 中的键值数据

package main
  
import "fmt"

func main() {
    m := map[int]int{
        1: 11,
        2: 12,
        3: 13,
    }

    fmt.Printf("{ ")
    for k, v := range m {
        fmt.Printf("[%d, %d] ", k, v)
    }
    fmt.Printf("}\n")
}
for k, _ := range m { 
  // 使用k
}
for _, v := range m {
  // 使用v
}

对同一 map 做多次遍历的时候,每次遍历元素的次序都不相同。

map 变量的传递开销

和切片类型一样,map 也是引用类型。这就意味着 map 类型变量作为参数被传递给函数或方法的时候,实质上传递的只是一个“描述符”(后面我们再讲这个描述符究竟是什么),而不是整个 map 的数据拷贝,所以这个传递的开销是固定的,而且也很小。

并且,当 map 变量被传递到函数或方法内部后,我们在函数内部对 map 类型参数的修改在函数外部也是可见的。比如你从这个示例中就可以看到,函数 foo 中对 map 类型变量 m 进行了修改,而这些修改在 foo 函数外也可见。

package main
  
import "fmt"

func foo(m map[string]int) {
    m["key1"] = 11
    m["key2"] = 12
}

func main() {
    m := map[string]int{
        "key1": 1,
        "key2": 2,
    }

    fmt.Println(m) // map[key1:1 key2:2]  
    foo(m)
    fmt.Println(m) // map[key1:11 key2:12] 
}

map 的内部实现

map 类型在 Go 运行时层实现的示意图:

image.png

初始状态

与语法层面 map 类型变量(m)一一对应的是 *runtime.hmap 的实例,即 runtime.hmap 类型的指针,也就是我们前面在讲解 map 类型变量传递开销时提到的 map 类型的描述符。hmap 类型是 map 类型的头部结构(header),它存储了后续 map 类型操作所需的所有信息,包括:

image.png 真正用来存储键值对数据的是桶,也就是 bucket,每个 bucket 中存储的是 Hash 值低 bit 位数值相同的元素,默认的元素个数为 BUCKETSIZE(值为 8,Go 1.17 版本中在 $GOROOT/src/cmd/compile/internal/reflectdata/reflect.go 中定义,与 runtime/map.go 中常量 bucketCnt 保持一致)。

当某个 bucket(比如 buckets[0]) 的 8 个空槽 slot)都填满了,且 map 尚未达到扩容的条件的情况下,运行时会建立 overflow bucket,并将这个 overflow bucket 挂在上面 bucket(如 buckets[0])末尾的 overflow 指针上,这样两个 buckets 形成了一个链表结构,直到下一次 map 扩容之前,这个结构都会一直存在。

从图中我们可以看到,每个 bucket 由三部分组成,从上到下分别是 tophash 区域、key 存储区域和 value 存储区域。

tophash 区域

当我们向 map 插入一条数据,或者是从 map 按 key 查询数据的时候,运行时都会使用哈希函数对 key 做哈希运算,并获得一个哈希值(hashcode)。这个 hashcode 非常关键,运行时会把 hashcode“一分为二”来看待,其中低位区的值用于选定 bucket,高位区的值用于在某个 bucket 中确定 key 的位置。我把这一过程整理成了下面这张示意图,你理解起来可以更直观:

image.png 因此,每个 bucket 的 tophash 区域其实是用来快速定位 key 位置的,这样就避免了逐个 key 进行比较这种代价较大的操作。尤其是当 key 是 size 较大的字符串类型时,好处就更突出了。这是一种以空间换时间的思路。

key 存储区域

当我们声明一个 map 类型变量,比如 var m map[string]int 时,Go 运行时就会为这个变量对应的特定 map 类型,生成一个 runtime.maptype 实例。如果这个实例已经存在,就会直接复用。maptype 实例的结构是这样的:

type maptype struct {
    typ        _type
    key        *_type
    elem       *_type
    bucket     *_type // internal type representing a hash bucket
    keysize    uint8  // size of key slot
    elemsize   uint8  // size of elem slot
    bucketsize uint16 // size of bucket
    flags      uint32
} 

Go 运行时就是利用 maptype 参数中的信息确定 key 的类型和大小的。map 所用的 hash 函数也存放在 maptype.key.alg.hash(key, hmap.hash0) 中。同时 maptype 的存在也让 Go 中所有 map 类型都共享一套运行时 map 操作函数,而不是像 C++ 那样为每种 map 类型创建一套 map 操作函数,这样就节省了对最终二进制文件空间的占用。

value 存储区域

我们再接着看 key 存储区域下方的另外一块连续的内存区域,这个区域存储的是 key 对应的 value。和 key 一样,这个区域的创建也是得到了 maptype 中信息的帮助。Go 运行时采用了把 key 和 value 分开存储的方式,而不是采用一个 kv 接着一个 kv 的 kv 紧邻方式存储,这带来的其实是算法上的复杂性,但却减少了因内存对齐带来的内存浪费

map 扩容

Go 运行时的 map 实现中引入了一个 LoadFactor(负载因子),当 count > LoadFactor * 2^B 或 overflow bucket 过多时,运行时会自动对 map 进行扩容。目前 Go 最新 1.17 版本 LoadFactor 设置为 6.5(loadFactorNum/loadFactorDen)。这里是 Go 中与 map 扩容相关的部分源码:

// $GOROOT/src/runtime/map.go
const (
  ... ...

  loadFactorNum = 13
  loadFactorDen = 2
  ... ...
)

func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
  ... ...
  if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
    hashGrow(t, h)
    goto again // Growing the table invalidates everything, so try again
  }
  ... ...
}
  • 如果是因为 overflow bucket 过多导致的“扩容”,实际上运行时会新建一个和现有规模一样的 bucket 数组,然后在 assign 和 delete 时做排空和迁移。
  • 如果是因为当前数据数量超出 LoadFactor 指定水位而进行的扩容,那么运行时会建立一个两倍于现有规模的 bucket 数组,但真正的排空和迁移工作也是在 assign 和 delete 时逐步进行的。原 bucket 数组会挂在 hmap 的 oldbuckets 指针下面,直到原 buckets 数组中所有数据都迁移到新数组后,原 buckets 数组才会被释放。你可以结合下面的 map 扩容示意图来理解这个过程,这会让你理解得更深刻一些:

image.png

map 与并发

充当 map 描述符角色的 hmap 实例自身是有状态的(hmap.flags),而且对状态的读写是没有并发保护的。所以说 map 实例不是并发写安全的,也不支持并发读写。如果我们对 map 实例进行并发读写,程序运行时就会抛出异常。

不过,如果我们仅仅是进行并发读,map 是没有问题的。而且,Go 1.9 版本中引入了支持并发写安全的 sync.Map 类型,可以在并发读写的场景下替换掉 map。如果你有这方面的需求,可以查看一下[sync.Map 的手册](sync package - sync - Go Packages)。

另外,你要注意,考虑到 map 可以自动扩容,map 中数据元素的 value 位置可能在这一过程中发生变化,所以 Go 不允许获取 map 中 value 的地址,这个约束是在编译期间就生效的。

p := &m[key]  // cannot take the address of m[key]
fmt.Println(p)

此文章为3月Day7学习笔记,内容来源于极客时间《Tony Bai · Go 语言第一课》。