为什么要学习函数式编程?
首先,它是一个非常古老的一个概念,函数式编程的历史。
- 函数式编程是随着 React 的流行受到越来越多的关注
- Vue 3也拥抱函数式编程
- 函数式编程可以抛弃 this
- 打包过程中可以更好的利用 tree shaking 过滤无用的代码
- 方便测试、方便并行处理
- 有很多库可以帮助我们进行函数式开发:lodash、underscore、ramda
什么是函数式编程?
函数式编程(Functional Programming, FP),是编程范式之一(常见的编程范式有面向过程编程、面向对象编程等)
- 面向对象编程:将现实世界中的事物抽象成程序世界中的类和对象,通过封装、继承和多态来演示事物事件的联系
- 函数式编程:把现实世界事物与事物之间的联系抽象到程序世界(对运算过程进行抽象)
- 程序的本质:根据输入通过某种运算获得相应的输出
- 如x -> f(联系、映射) -> y,y=f(x)
- 函数式编程中的函数指的不是程序中的函数(方法),而是数学中的函数即映射关系,是用来描述数据(函数)之间的映射。例如:
y= sin(x)
中,x和y的关系 - 纯函数:相同的输入始终要得到相同的输出
// 非函数式
let num1 = 2
let num2 = 3
let sum = num1 + num2
console.log(sum)
// 函数式
function add(n1, n2) {
return n1 + n2
}
let sum = add(2, 3)
console.log(sum)
前置
函数是一等公民
函数是一等公民,MDN First-class Function
- 函数可以存储在变量中
- 函数作为参数
- 函数作为返回值
- 把函数赋值给变量
在 JavaScript 中函数就是一个普通的对象 (可以通过 new Function()
),可以把函数存储到变量/数组中,还可以将函数作为另一个函数的参数和返回值,也可以在程序运行的时候通过 new Function('alert(1)')
来构造一个新的函数。
// 把函数赋值给变量
let fn = function () {
console.log('Hello First-class Function')
}
fn()
高阶函数
什么是高阶函数
- 高阶函数 (Higher-order function)
- 可以把函数作为参数传递给另一个函数
- 可以把函数作为另一个函数的返回结果
- 函数作为参数
// 把函数赋值给变量
function forEach(array, fn) {
for (let i = 0; i < array.length; i++) {
fn(array[i])
}
}
// filter
function filter(array, fn) {
let results = []
for (let i = 0; i < array.length; i++) {
if (fn(array[i])) {
results.push(array[i])
}
}
return results
}
- 函数作为返回值
function makeFn() {
let msg = 'Hello function'
return function () {
console.log(msg)
}
}
const fn = makeFn()
fn()
// once function
function once(fn) {
let done = false
return function () {
if (!done) {
done = true
return fn.apply(this, arguments)
}
}
}
let pay = once(function (money) {
console.log(`支付:${money} RMB`)
})
// 只会支付一次
pay(5)
pay(5)
使用高阶函数的意义
- 抽象可以帮我们屏蔽细节,只需要关注与我们的目标
- 高阶函数是用来抽象通用的问题
// 面向过程的方式
let array = [1, 2, 3, 4]
for (let i = 0; i < array.length; i++) {
console.log(array[i])
}
// 高阶高阶函数
let array = [1, 2, 3, 4]
forEach(array, item => {
console.log(item)
})
let r = filter(array, item => {
return item % 2 === 0
})
常用高阶函数
- forEach
- map
- filter
- every
- some
- find/findIndex
- reduce
- sort
const map = (array, fn) => {
let results = []
for (const value of array) {
results.push(fn(value))
}
return results
}
const every = (array, fn) => {
let result = true
for (const value of array) {
result = fn(value)
if (!result) {
break
}
}
return result
}
const some = (array, fn) => {
let result = false
for (const value of array) {
result = fn(value)
if (result) {
break
}
}
return result
}
闭包
-
闭包 (Closure):函数和其周围的状态(词法环境)的引用捆绑在一起形成闭包。
- 可以在另一个作用域中调用一个函数的内部函数并访问到该函数的作用域中的成员
-
上面高阶函数的
makeFn
和once
函数的实现都是闭包 -
闭包的本质:函数在执行的时候会放到一个执行栈上,当函数执行完毕之后会从执行栈上移除,但是堆上的作用域成员因为被外部引用不能释放,因此内部函数依然可以访问外部函数的成员
纯函数
纯函数概念
- 相同的输入永远会得到相同的输出,而且没有任何可观察的副作用,就数学中的函数(用来描述输入和输出之间的关系),y = f(x)
-
lodash 是一个纯函数的功能库,提供了对数组、数字、对象、字符串、函数等操作的一些方法
-
数组的
slice
和splice
分别是:纯函数和不纯的函数slice
返回数组中的指定部分,不会改变原数组splice
对数组进行操作返回该数组,会改变原数组
-
函数式编程不会保留计算中间的结果,所以变量是不可变的(无状态的)
-
我们可以把一个函数的执行结果交给另一个函数去处理
纯函数的好处
- 可缓存
- 因为纯函数对相同的输入始终有相同的结果,所以可以把纯函数的结果缓存起来。memoize
- 可测试
- 纯函数让测试更方便
- 并行处理
- 在多线程环境下并行操作共享的内存数据很可能会出现意外情况
- 纯函数不需要访问共享的内存数据,所以在并行环境下可以任意运行纯函数 (Web Worker)
副作用
- 纯函数:对于相同的输入永远会得到相同的输出,而且没有任何可观察的副作用
// 不纯的
let mini = 18
function checkAge(age) {
return age >= mini
}
// 纯的(有硬编码,后续可以通过柯里化解决)
function checkAge(age) {
let mini = 18
return age >= mini
}
副作用让一个函数变的不纯(如上例),纯函数对相同的输入永远返回相同的输出,如果函数依赖于外部的状态就无法保证输出相同,就会带来副作用。
副作用来源:
- 全局变量
- 配置文件
- 数据库
- 获取用户的输入
所有的外部交互都有可能带来副作用,副作用也使得方法通用性下降,不适合扩展和可重用性,同时副作用会给程序中带来安全隐患给程序带来不确定性,但副作用不可能完全禁止,所以要尽可能控制它们在可控范围内发生。
柯里化 (Haskell Brooks Curry)
- 柯里化 (Currying):
- 当一个函数有多个参数的时候先传递一部分参数调用它(这部分参数以后永远不变)
- 然后返回一个新的函数接收剩余的参数,返回结果,例如上面硬编码修改后。
// 普通纯函数
function checkAge(min, age) {
return age >= min
}
checkAge(18, 24)
checkAge(18, 20)
checkAge(20, 30)
// 柯里化
function checkAge(min) {
return function (age) {
return age >= min
}
}
// ES6 写法
let checkAge = min => (age => age >= min)
let checkAge18 = checkAge(18)
let checkAge20 = checkAge(20)
checkAge18(24)
checkAge18(20)
lodash 中的柯里化函数
-
_.curry(func)
- 功能:创建一个函数,该函数接收一个或多个 func 的参数,如果 func 所需要的参数都被提供则执行 func 并返回执行的结果。否则继续返回该函数并等待接收剩余的参数。
- 参数:需要柯里化的函数
- 返回值:柯里化后的函数
-
模拟 _.curry() 的实现
function curry(func) {
return function curriedFn(...args) {
// 判断实参和形参的个数
if (args.length < func.length) {
return function () {
return curriedFn(...args.concat(Array.from(arguments)))
}
}
// 实参和形参个数相同,调用 func,返回结果
return func(...args)
}
}
总结
- 柯里化可以让我们给一个函数传递较少的参数得到一个已经记住了某些固定参数的新函数
- 这是一种对函数参数的'缓存'
- 让函数变的更灵活,让函数的粒度更小
- 可以把多元函数转换成一元函数,可以组合使用函数产生强大的功能
函数组合
- 纯函数和柯里化很容易写出洋葱代码 h(g(f(x)))
- 函数组合可以让我们把细粒度的函数重新组合生成一个新的函数
管道
下面这张图表示程序中使用函数处理数据的过程,给 fn 函数输入参数 a,返回结果 b。可以想想 a 数据通过一个管道得到了 b 数据。
当fn函数比较复杂的时候,我们可以把函数fn拆分成多个小函数,此时多了中间运算过程产生的m和n。
下面这张图中可以想象成把fn这个管道拆分成了3个管道f1,f2,f3,数据a通过管道f3得到结果m,m 再通过管道f2得到结果n,n通过管道f1得到最终结果b
fn = compose(f1, f2, f3)
b = fn(a)
函数组合
- 函数组合 (compose):如果一个函数要经过多个函数处理才能得到最终值,这个时候可以把中间过程的函数合并成一个函数
- 函数就像是数据的管道,函数组合就是把这些管道连接起来,让数据穿过多个管道形成最终结果
- 函数组合默认是从右到左执行
// 组合函数
function compose(f, g) {
return function (x) {
return f(g(x))
}
}
function first(arr) {
return arr[0]
}
function reverse(arr) {
return arr.reverse()
}
// 从右到左运行
let last = compose(first, reverse)
console.log(last([1, 2, 3, 4]))
- lodash 中组合函数
flow()
或者flowRight()
,都可以组合多个函数 - 模拟实现 lodash 的 flowRight 方法
// 多函数组合
function compose(...fns) {
return function (value) {
return fns.reverse().reduce(function (acc, fn) {
return fn(acc)
}, value)
}
}
// ES6
const compose = (...fns) => value => fns.reverse().reduce((acc, fn) => fn(acc), value)
- 函数的组合要满足结合律 (associativity):
- 我们既可以把 g 和 h 组合,还可以把 f 和 g 组合,结果都是一样的
// 结合律(associativity)
let f = compose(f, g, h)
let associative = compose(compose(f, g), h) == compose(f, compose(g, h))
Point Free
- 我们可以把数据处理的过程定义成与数据无关的合成运算,不需要用到代表数据的那个参数,只要把简单的运算步骤合成到一起,在使用这种模式之前我们需要定义一些辅助的基本运算函数。
- 不需要指明处理的数据
- 只需要合成运算过程
- 需要定义一些辅助的基本运算函数
// 非 Point Free 模式
// Hello World => hello_world
function f(word) {
return word.toLowerCase().replace(/\s+/g, '_');
}
// Point Free
const fp = require('lodash/fp')
const f = fp.flowRight(fp.replace(/\s+/g, '_'), fp.toLower)
console.log(f('Hello World'))
Functor (函子)
为什么要学函子
在函数式编程中函子可以帮助我们把副作用控制在可控的范围内、异常处理、异步操作等。
什么是 Functor
- 容器:包含值和值的变形关系(这个变形关系就是函数)
- 函子:是一个特殊的容器,通过一个普通的对象来实现,该对象具有 map 方法,map 方法可以运行一个函数对值进行处理(变形关系)
Functor 函子
// 一个容器,包裹一个值
class Container {
// of 静态方法,可以省略 new 关键字创建对象
static of(value) {
return new Container(value)
}
constructor(value) {
this._value = value
}
// map 方法,传入变形关系,将容器里的每一个值映射到另一个容器
map(fn) {
return Container.of(fn(this._value))
}
}
// 测试
Container.of(3)
.map(x => x + 2)
.map(x => x * x)
- 总结
- 函数式编程的运算不直接操作值,而是由函子完成
- 函子就是一个实现了 map 契约的对象
- 我们可以把函子想象成一个盒子,这个盒子里封装了一个值
- 想要处理盒子中的值,我们需要给盒子的 map 方法传递一个处理值的函数(纯函数),由这个函数来对值进行处理
- 最终 map 方法返回一个包含新值的盒子(函子)
- 在 Functor 中如果我们传入 null 或 undefined
// 值如果不小心传入了空值(副作用)
Container.of(null)
.map(x => x.toUpperCase())
// TypeError: Cannot read property 'toUpperCase' of null
MayBe 函子
- 我们在编程的过程中可能会遇到很多错误,需要对这些错误做相应的处理
- MayBe 函子的作用就是可以对外部的空值情况做处理(控制副作用在允许的范围)
class MayBe {
static of(value) {
return new MayBe(value)
}
constructor(value) {
this._value = value
}
// 如果对空值变形的话直接返回 值为 null 的函子
map(fn) {
return this.isNothing() ? MayBe.of(null) : MayBe.of(fn(this._value))
}
isNothing() {
return this._value === null || this._value === undefined
}
}
// 传入具体值
MayBe.of('Hello World')
.map(x => x.toUpperCase())
// 传入 null 的情况
MayBe.of(null)
.map(x => x.toUpperCase())
// => MayBe { _value: null }
- 但在 MayBe 函子中,我们很难确认是哪一步产生的空值问题,如下例:
MayBe.of('hello world')
.map(x => x.toUpperCase())
.map(x => null)
.map(x => x.split(' '))
// => MayBe { _value: null }
Either 函子
- Either 两者中的任何一个,类似于 if...else...的处理
- 异常会让函数变的不纯,Either 函子可以用来做异常处理
class Left {
static of(value) {
return new Left(value)
}
constructor(value) {
this._value = value
}
map(fn) {
return this
}
}
class Right {
static of(value) {
return new Right(value)
}
constructor(value) {
this._value = value
}
map(fn) {
return Right.of(fn(this._value))
}
}
- Either 用来处理异常,针对不同的情况使用不同的函子
function parseJSON(json) {
try {
return Right.of(JSON.parse(json));
} catch (e) {
return Left.of({ error: e.message });
}
}
let r = parseJSON('{ "name": "zs" }')
.map(x => x.name.toUpperCase())
console.log(r)
IO 函子
- IO 函子中的 _value 是一个函数,这里是把函数作为值来处理
- IO 函子可以把不纯的动作存储到 _value 中,延迟执行这个不纯的操作(惰性执行),包装当前的操作纯
- 把不纯的操作交给调用者来处理
const fp = require('lodash/fp')
class IO {
static of(x) {
return new IO(function () {
return x
})
}
constructor(fn) {
this._value = fn
}
map(fn) {
// 把当前的 value 和 传入的 fn 组合成一个新的函数
return new IO(fp.flowRight(fn, this._value))
}
}
// 调用
let io = IO.of(process).map(p => p.execPath)
console.log(io._value())
Task 异步执行
- 异步任务的实现过于复杂,我们使用 folktale 中的 Task 来演示
- folktale 一个标准的函数式编程库
- 和 lodash、ramda 不同的是,他没有提供很多功能函数
- 只提供了一些函数式处理的操作,例如:compose、curry 等,一些函子 Task、Either、MayBe 等
const { compose, curry } = require('folktale/core/lambda')
const { toUpper, first } = require('lodash/fp')
// 第一个参数是传入函数的参数个数
let f = curry(2, function (x, y) {
console.log(x + y)
})
f(3, 4)
f(3)(4)
// 函数组合
let f = compose(toUpper, first)
f(['one', 'two'])
- Task 异步执行 以folktale(2.3.2) 的Task来演示
const { task } = require('folktale/concurrency/task')
function readFile(filename) {
return task(resolver => {
fs.readFile(filename, 'utf-8', (err, data) => {
if (err) resolver.reject(err)
resolver.resolve(data)
})
})
}
// 调用 run 执行
readFile('package.json')
.map(split('\n'))
.map(find(x => x.includes('version')))
.run().listen({
onRejected: err => {
console.log(err)
},
onResolved: value => {
console.log(value)
}
})
Pointed 函子
- Pointed 函子是实现了 of 静态方法的函子,前面的例子就有。
- of 方法是为了避免使用 new 来创建对象,更深层的含义是 of 方法用来把值放到上下文Context(把值放到容器中,使用 map 来处理值)
Monad(单子)
为了解决函子嵌套问题,如上的IO函子
- Monad 函子是可以变扁的 Pointed 函子,IO(IO(x))
- 一个函子如果具有 join 和 of 两个方法并遵守一些定律就是一个 Monad
const fp = require('lodash/fp')
// IO Monad
class IO {
static of(x) {
return new IO(function () {
return x
})
}
constructor(fn) {
this._value = fn
}
map(fn) {
return new IO(fp.flowRight(fn, this._value))
}
join() {
return this._value()
}
flatMap(fn) {
return this.map(fn).join()
}
}
let r = readFile('package.json')
.map(fp.toUpper)
.flatMap(print)
.join()