基于EKF的四旋翼无人机姿态估计matlab仿真

683 阅读3分钟

1.算法描述

       卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全包含噪声的测量中,估计动态系统的状态。这种滤波方法以它的发明者鲁道夫·E·卡尔曼(Rudolf E. Kalman)命名。卡尔曼最初提出的滤波理论只适用于线性系统。Bucy,Sunahara等人提出并研究了扩展卡尔曼滤波(EKF),将卡尔曼滤波理论进一步应用到非线性领域。

 

       扩展卡尔曼滤波(Extended Kalman Filter,EKF)是标准卡尔曼滤波在非线性情形下的一种扩展形式,EKF算法是将非线性函数进行泰勒展开,省略高阶项,保留展开项的一阶项,以此来实现非线性函数线性化,最后通过卡尔曼滤波算法近似计算系统的状态估计值和方差估计值,对信号进行滤波。

       扩展卡尔曼滤波EKF的状态转移方程和观测方程为:   

 

1.png

 

 EKF和KF的区别如下:

 

2.png

 

    姿态解算就是通过融合传感器数据解算出姿态角。姿态角是俯仰角(pitch)、滚转角(roll)和偏航角(yaw)的合称,此文分别使用 α , β , γ \alpha, \beta, \gammaα,β,γ 表示。

 

俯仰角

       俯仰角是无人机机体系 x 轴与水平面夹角,也即机体系与航向系 x 轴的夹角,机头上仰为正,范围 α ∈ [ − π / 2 , π / 2 ] \alpha \in [-\pi/2, \pi/2]α∈[−π/2,π/2]。

 

滚转角

      滚转角是无人机机体系 y 轴与水平面夹角,也即机体系与航向系 y 轴的夹角,机身左升右降为正,范围 β ∈ [ − π , π ] \beta \in [-\pi, \pi]β∈[−π,π]。

 

偏航角

       偏航角是无人机机体系 x 轴在水平面投影与地球系 x 轴(正北方)的夹角,也即航向系 x 轴与地球系 x 轴夹角。俯视机身,顺时针方向(往东)角度递增,逆时针方向角度递减,范围 γ ∈ [ − π , π ] \gamma \in [-\pi, \pi]γ∈[−π,π]。

 

      可见,引入航向系之后可以更加方便地定义姿态角。注意与下面的欧拉角作对比,欧拉角和姿态角不是同样概念,这也是这里使用 α , β , γ \alpha, \beta, \gammaα,β,γ 而不是更常见的 θ , ϕ , ψ \theta, \phi, \psiθ,ϕ,ψ 的原因,后者用于表示欧拉角。

 

2.仿真效果预览

matlab2022a仿真结果如下:

 

3.png

4.png

5.png

6.png

7.png

 

3.MATLAB核心程序 `%常系数

L= 0.3875;  %单位(m)

Ix = 0.05887;  %单位(kg·m^2)

Iy = 0.05887;

Iz = 0.13151;

g = 9.81; %单位(N/kg)

 

%动力学方程的常系数

a1 = -(Iy - Iz)/Ix;

a2 = -(Iz - Ix)/Iy;

a3 = -(Ix - Iy)/Iz;  

b1 = L/Ix;

b2 = L/Iy;

b3 = 1/Iz;

 

Ts = 0.1;                    %采样时间

t = 5;                       %仿真时间

len = fix(t/Ts);            %仿真步数

n = 6;                        %状态维度

w = 0.1;                     %过程标准差

v = 0.5;                      %测量标准差

Q = w^2*eye(n);        %过程方差

R = v^2;                    %测量值的方差

 

h=@(x)[x(2);x(4);x(6)];                  %测量方程

s=[1;2;3;3;2;1];                            %初始状态

x=s+w*randn(6,1);                      %初始化状态

P = eye(6);                                 %初始化协方差矩阵

xV = zeros(6,len);                       %EKF估计值

sV = zeros(6,len);                       %真实值

zV = zeros(3,len);                       %测量值

 

for k=1:len

  %随机赋值控制量

  u2 = 0.1*randn(1,1);

  u3 = 0.1*randn(1,1);

  u4 = 0.1*randn(1,1);

  

  z = h(s) + v*randn;                     

  sV(:,k)= s;                             %实际状态

  zV(:,k) = z;                           %状态测量值

  

  %状态方程

  f=@(x)[x(1)+Ts*x(2);

           (a1*x(4)x(6) +b1u2)*Ts+x(2);

           x(3)+Ts*x(4);

           (a2*x(2)x(6) +b2u3)*Ts+x(4);

           x(5)+Ts*x(6);

           (a3*x(2)x(4) +b3u4)*Ts+x(6);];  

  

  %一步预测,同时计算f的雅可比矩阵A

  [x1,A]=jaccsd(f,x);

  

  %过程方差预测

  P=APA'+Q;         

  

  %状态预测,同时计算h的雅可比矩阵H

  [z1,H]=jaccsd(h,x1);

  

  %计算卡尔曼增益

  K=PH'/(HP*H'+R);

  

  %状态EKF估计值

  x=x1+K*(z-z1);        

  

  %协方差更新

  P=P-KHP;          

  

  xV(:,k) = x;          

  

  %更新状态

  s = f(s) + w*randn(6,1);  

end`