题目
216.组合总和III
思路
- 确定递归函数参数
- 一维数组path来存放符合条件的结果,二维数组result来存放结果集。
- targetSum(int)目标和,也就是题目中的n。
- k(int)就是题目中要求k个数的集合。
- sum(int)为已经收集的元素的总和,也就是path里元素的总和。
- startIndex(int)为下一层for循环搜索的起始位置。
vector<vector<int>> result;
vector<int> path;
void backtracking(int targetSum, int k, int sum, int startIndex)
- 确定终止条件
- k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。所以如果path.size() 和 k相等了,就终止。
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
- 单层搜索过程
- 本题和77. 组合 (opens new window)区别之一就是集合固定的就是9个数[1,...,9],所以for循环固定i<=9。
- path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。
for (int i = startIndex; i <= 9; i++) {
sum += i;
path.push_back(i);
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
整体代码
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
// targetSum:目标和,也就是题目中的n。
// k:题目中要求k个数的集合。
// sum:已经收集的元素的总和,也就是path里元素的总和。
// startIndex:下一层for循环搜索的起始位置。
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
for (int i = startIndex; i <= 9; i++) {
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
剪枝
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (sum > targetSum) { // 剪枝操作
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return;
}
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
17.电话号码的字母组合
思路
输入"23",最直接的想法就是两层for循环遍历了吧,正好把组合的情况都输出了。如果输入"233"呢,那么就三层for循环,如果"2333"呢,就四层for循环.......
本题要解决如下三个问题:
-
- 数字和字母如何映射
-
- 两个字母就两个for循环,三个字符我就三个for循环,以此类推
-
- 输入1 * #按键等等异常情况
数字和字母如何映射
可以使用map或者定义一个二维数组,例如:string letterMap[10],来做映射:
const string letterMap[10] = {
"", // 0
"", // 1
"abc", // 2
"def", // 3
"ghi", // 4
"jkl", // 5
"mno", // 6
"pqrs", // 7
"tuv", // 8
"wxyz", // 9
};
回溯法来解决n个for循环的问题
例如:输入:"23",抽象为树形结构,如图所示:
图中可以看出遍历的深度,就是输入"23"的长度,而叶子节点就是我们要收集的结果,输出["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]。
- 确定回溯函数参数
- 一个字符串s来收集叶子节点的结果,然后用一个字符串数组result保存起来。
- 参数指定是有题目中给的string digits,然后还要有一个参数就是int型的index。这个index是记录遍历第几个数字了,就是用来遍历digits的(题目中给出数字字符串),同时index也表示树的深度。
- 确定终止条件
例如输入用例"23",两个数字,那么根节点往下递归两层就可以了,叶子节点就是要收集的结果集。
- 终止条件就是如果index 等于 输入的数字个数(digits.size)了(本来index就是用来遍历digits的)。然后收集结果,结束本层递归。
- 确定单层遍历逻辑
- 首先要取index指向的数字,并找到对应的字符集(手机键盘的字符集)。
- 然后for循环来处理这个字符集
整体代码
class Solution {
private:
const string letterMap[10] = {
"", // 0
"", // 1
"abc", // 2
"def", // 3
"ghi", // 4
"jkl", // 5
"mno", // 6
"pqrs", // 7
"tuv", // 8
"wxyz", // 9
};
public:
vector<string> result;
string s;
void backtracking(const string& digits, int index) {
if (index == digits.size()) {
result.push_back(s);
return;
}
int digit = digits[index] - '0'; // 将index指向的数字转为int
string letters = letterMap[digit]; // 取数字对应的字符集
for (int i = 0; i < letters.size(); i++) {
s.push_back(letters[i]); // 处理
backtracking(digits, index + 1); // 递归,注意index+1,一下层要处理下一个数字了
s.pop_back(); // 回溯
}
}
vector<string> letterCombinations(string digits) {
s.clear();
result.clear();
//如果字符串为空
if (digits.size() == 0) {
return result;
}
backtracking(digits, 0);
return result;
}
};