GO(七) | 青训营笔记

62 阅读7分钟

这是我参与「第五届青训营 」伴学笔记创作活动的第 7 天

面向对象

匿名字段

接口

go支持只提供类型而不写字段名的方式,也就是匿名字段,也称为嵌入字段

package main
​
import "fmt"//go支持只提供类型而不写字段名的方式,也就是匿名字段,也称为嵌入字段//人
type Person struct {
    name string
    sex  string
    age  int
}
​
type Student struct {
    Person
    id   int
    addr string
}
​
func main() {
    // 初始化
    s1 := Student{Person{"5lmh", "man", 20}, 1, "bj"}
    fmt.Println(s1)
​
    s2 := Student{Person: Person{"5lmh", "man", 20}}
    fmt.Println(s2)
​
    s3 := Student{Person: Person{name: "5lmh"}}
    fmt.Println(s3)
}

同名字段的情况

package main
​
import "fmt"//人
type Person struct {
    name string
    sex  string
    age  int
}
​
type Student struct {
    Person
    id   int
    addr string
    //同名字段
    name string
}
​
func main() {
    var s Student
    // 给自己字段赋值了
    s.name = "5lmh"
    fmt.Println(s)
​
    // 若给父类同名字段赋值,如下
    s.Person.name = "枯藤"
    fmt.Println(s)
}

所有的内置类型和自定义类型都是可以作为匿名字段去使用

package main
​
import "fmt"//人
type Person struct {
    name string
    sex  string
    age  int
}
​
// 自定义类型
type mystr string// 学生
type Student struct {
    Person
    int
    mystr
}
​
func main() {
    s1 := Student{Person{"5lmh", "man", 18}, 1, "bj"}
    fmt.Println(s1)
}

指针类型匿名字段

package main
​
import "fmt"//人
type Person struct {
    name string
    sex  string
    age  int
}
​
// 学生
type Student struct {
    *Person
    id   int
    addr string
}
​
func main() {
    s1 := Student{&Person{"5lmh", "man", 18}, 1, "bj"}
    fmt.Println(s1)
    fmt.Println(s1.name)
    fmt.Println(s1.Person.name)
}

接口

接口(interface)定义了一个对象的行为规范,只定义规范不实现,由具体的对象来实现规范的细节。

接口

接口类型

在Go语言中接口(interface)是一种类型,一种抽象的类型。

interface是一组method的集合,是duck-type programming的一种体现。接口做的事情就像是定义一个协议(规则),只要一台机器有洗衣服和甩干的功能,我就称它为洗衣机。不关心属性(数据),只关心行为(方法)。

定义:

type 接口类型名 interface{
方法名1( 参数列表1 ) 返回值列表1
方法名2( 参数列表2 ) 返回值列表2
…
}
  1. 接口名:使用type将接口定义为自定义的类型名。Go语言的接口在命名时,一般会在单词后面添加er,如有写操作的接口叫Writer,有字符串功能的接口叫Stringer等。接口名最好要能突出该接口的类型含义。
  2. 方法名:当方法名首字母是大写且这个接口类型名首字母也是大写时,这个方法可以被接口所在的包(package)之外的代码访问。
  3. 参数列表、返回值列表:参数列表和返回值列表中的参数变量名可以省略

条件

一个对象只要全部实现了接口中的方法,那么就实现了这个接口。接口就是一个需要实现的方法列表。

定义一个Sayer接口:

// Sayer 接口
type Sayer interface {
    say()
}

定义dog和cat两个结构体:

type dog struct {}
​
type cat struct {}

因为Sayer接口里只有一个say方法,所以我们只需要给dog和cat 分别实现say方法就可以实现Sayer接口了。

// dog实现了Sayer接口
func (d dog) say() {
    fmt.Println("汪汪汪")
}
​
// cat实现了Sayer接口
func (c cat) say() {
    fmt.Println("喵喵喵")
}

接口的实现就是这么简单,只要实现了接口中的所有方法,就实现了这个接口。

接口类型变量

接口类型变量能够存储所有实现了该接口的实例。

func main() {
    var x Sayer // 声明一个Sayer类型的变量x
    a := cat{}  // 实例化一个cat
    b := dog{}  // 实例化一个dog
    x = a       // 可以把cat实例直接赋值给x
    x.say()     // 喵喵喵
    x = b       // 可以把dog实例直接赋值给x
    x.say()     // 汪汪汪
}

值接收者和指针接收者实现接口的区别

type Mover interface {
    move()
}
​
type dog struct {}

值接收者实现接口

func (d dog) move() {
    fmt.Println("狗会动")
}

此时实现接口的是dog类型:

func main() {
    var x Mover
    var wangcai = dog{} // 旺财是dog类型
    x = wangcai         // x可以接收dog类型
    var fugui = &dog{}  // 富贵是*dog类型
    x = fugui           // x可以接收*dog类型
    x.move()
}

使用值接收者实现接口之后,不管是dog结构体还是结构体指针*dog类型的变量都可以赋值给该接口变量。因为Go语言中有对指针类型变量求值的语法糖,dog指针fugui内部会自动求值*fugui

指针接收者实现接口

func (d *dog) move() {
    fmt.Println("狗会动")
}
func main() {
    var x Mover
    var wangcai = dog{} // 旺财是dog类型
    x = wangcai         // x不可以接收dog类型
    var fugui = &dog{}  // 富贵是*dog类型
    x = fugui           // x可以接收*dog类型
}

此时实现Mover接口的是*dog类型,所以不能给x传入dog类型的wangcai,此时x只能存储*dog类型的值。

类型与接口的关系

一个类型实现多个接口

一个类型可以同时实现多个接口,而接口间彼此独立,不知道对方的实现。 例如,狗可以叫,也可以动。我们就分别定义Sayer接口和Mover接口,如下: Mover接口。

// Sayer 接口
type Sayer interface {
    say()
}
​
// Mover 接口
type Mover interface {
    move()
}

dog既可以实现Sayer接口,也可以实现Mover接口。

type dog struct {
    name string
}
​
// 实现Sayer接口
func (d dog) say() {
    fmt.Printf("%s会叫汪汪汪\n", d.name)
}
​
// 实现Mover接口
func (d dog) move() {
    fmt.Printf("%s会动\n", d.name)
}
​
func main() {
    var x Sayer
    var y Mover
​
    var a = dog{name: "旺财"}
    x = a
    y = a
    x.say()
    y.move()
}

多个类型实现同一接口

Go语言中不同的类型还可以实现同一接口 首先我们定义一个Mover接口,它要求必须由一个move方法。

// Mover 接口
type Mover interface {
    move()
}

例如

type dog struct {
    name string
}
​
type car struct {
    brand string
}
​
// dog类型实现Mover接口
func (d dog) move() {
    fmt.Printf("%s会跑\n", d.name)
}
​
// car类型实现Mover接口
func (c car) move() {
    fmt.Printf("%s速度70迈\n", c.brand)
}
func main() {
    var x Mover
    var a = dog{name: "旺财"}
    var b = car{brand: "保时捷"}
    x = a
    x.move()
    x = b
    x.move()
}

并且一个接口的方法,不一定需要由一个类型完全实现,接口的方法可以通过在类型中嵌入其他类型或者结构体来实现。

// WashingMachine 洗衣机
type WashingMachine interface {
    wash()
    dry()
}
​
// 甩干器
type dryer struct{}
​
// 实现WashingMachine接口的dry()方法
func (d dryer) dry() {
    fmt.Println("甩一甩")
}
​
// 海尔洗衣机
type haier struct {
    dryer //嵌入甩干器
}
​
// 实现WashingMachine接口的wash()方法
func (h haier) wash() {
    fmt.Println("洗刷刷")
}

接口嵌套

接口与接口间可以通过嵌套创造出新的接口。

// Sayer 接口
type Sayer interface {
    say()
}
​
// Mover 接口
type Mover interface {
    move()
}
​
// 接口嵌套
type animal interface {
    Sayer
    Mover
}

嵌套得到的接口的使用与普通接口一样,这里我们让cat实现animal接口:

type cat struct {
    name string
}
​
func (c cat) say() {
    fmt.Println("喵喵喵")
}
​
func (c cat) move() {
    fmt.Println("猫会动")
}
​
func main() {
    var x animal
    x = cat{name: "花花"}
    x.move()
    x.say()
}

空接口

定义

空接口是指没有定义任何方法的接口。因此任何类型都实现了空接口。

空接口类型的变量可以存储任意类型的变量。

func main() {
    // 定义一个空接口x
    var x interface{}
    s := "pprof.cn"
    x = s
    fmt.Printf("type:%T value:%v\n", x, x)
    i := 100
    x = i
    fmt.Printf("type:%T value:%v\n", x, x)
    b := true
    x = b
    fmt.Printf("type:%T value:%v\n", x, x)
}

空接口的应用

空接口作为函数的参数

使用空接口实现可以接收任意类型的函数参数。

// 空接口作为函数参数
func show(a interface{}) {
    fmt.Printf("type:%T value:%v\n", a, a)
}

空接口作为map的值

使用空接口实现可以保存任意值的字典。

// 空接口作为map值
    var studentInfo = make(map[string]interface{})
    studentInfo["name"] = "李白"
    studentInfo["age"] = 18
    studentInfo["married"] = false
    fmt.Println(studentInfo)

类型断言

空接口可以存储任意类型的值,那我们如何获取其存储的具体数据呢?

接口值

一个接口的值(简称接口值)是由一个具体类型和具体类型的值两部分组成的。这两部分分别称为接口的动态类型和动态值。

我们来看一个具体的例子:

var w io.Writer
w = os.Stdout
w = new(bytes.Buffer)
w = nil
func main() {
    var x interface{}
    x = "pprof.cn"
    v, ok := x.(string)
    if ok {
        fmt.Println(v)
    } else {
        fmt.Println("类型断言失败")
    }
}

上面的示例中如果要断言多次就需要写多个if判断,这个时候可以使用switch语句来实现:

func justifyType(x interface{}) {
    switch v := x.(type) {
    case string:
        fmt.Printf("x is a string,value is %v\n", v)
    case int:
        fmt.Printf("x is a int is %v\n", v)
    case bool:
        fmt.Printf("x is a bool is %v\n", v)
    default:
        fmt.Println("unsupport type!")
    }
}

注意:只有当有两个或两个以上的具体类型必须以相同的方式进行处理时才需要定义接口。不要为了接口而写接口,那样只会增加不必要的抽象,导致不必要的运行时损耗。