力扣169.多数元素这道题中,第一次接触到这个投票算法,感觉很有意思,不止可以应用在算法上
那就来了解一下这个算法吧: 代码本身不难写,只是正确性较难证明,按官方题解的说法:
(其他的解法,如常规的哈希表计数,直接排序,随机化等就不一一展开了,有兴趣的小伙伴可以一键直达官方题解~ )
Boyer-Moore 算法的正确性较难证明,这里给出一种较为详细的用例子辅助证明的思路,供读者参考:
首先我们根据算法步骤中对 count 的定义,可以发现:在对整个数组进行遍历的过程中,count 的值一定非负。这是因为如果 count 的值为 0,那么在这一轮遍历的开始时刻,我们会将 x 的值赋予 candidate 并在接下来的一步中将 count 的值增加 1。因此 count 的值在遍历的过程中一直保持非负。
那么 count 本身除了计数器之外,还有什么更深层次的意义呢?我们还是以数组
[7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7] 作为例子,首先写下它在每一步遍历时 candidate 和 count 的值:
nums: [7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7] candidate: 7 7 7 7 7 7 5 5 5 5 5 5 7 7 7 7 count: 1 2 1 2 1 0 1 0 1 2 1 0 1 2 3 4 我们再定义一个变量 value,它和真正的众数 maj 绑定。在每一步遍历时,如果当前的数 x 和 maj 相等,那么 value 的值加 1,否则减 1。value 的实际意义即为:到当前的这一步遍历为止,众数出现的次数比非众数多出了多少次。我们将 value 的值也写在下方:
nums: [7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7] value: 1 2 1 2 1 0 -1 0 -1 -2 -1 0 1 2 3 4 有没有发现什么?我们将 count 和 value 放在一起:
nums: [7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7] count: 1 2 1 2 1 0 1 0 1 2 1 0 1 2 3 4 value: 1 2 1 2 1 0 -1 0 -1 -2 -1 0 1 2 3 4 发现在每一步遍历中,count 和 value 要么相等,要么互为相反数!并且在候选众数 candidate 就是 maj 时,它们相等,candidate 是其它的数时,它们互为相反数!
为什么会有这么奇妙的性质呢?这并不难证明:我们将候选众数 candidate 保持不变的连续的遍历称为「一段」。在同一段中,count 的值是根据 candidate == x 的判断进行加减的。那么如果 candidate 恰好为 maj,那么在这一段中,count 和 value 的变化是同步的;如果 candidate 不为 maj,那么在这一段中 count 和 value 的变化是相反的。因此就有了这样一个奇妙的性质。
这样以来,由于:
我们证明了 count 的值一直为非负,在最后一步遍历结束后也是如此;
由于 value 的值与真正的众数 maj 绑定,并且它表示「众数出现的次数比非众数多出了多少次」,那么在最后一步遍历结束后,value 的值为正数;
在最后一步遍历结束后,count 非负,value 为正数,所以它们不可能互为相反数,只可能相等,即 count == value。因此在最后「一段」中,count 的 value 的变化是同步的,也就是说,candidate 中存储的候选众数就是真正的众数 maj。
链接:leetcode.cn/problems/ma… 来源:力扣(LeetCode)
这里给出我本人朴素的理解: 假设投给众数的票一共是m, m肯定是大于n/2的,被其他数--抵消后依然会大于0,而最后count大于0的时候,candidate只会是众数本人。
这里也给出Go版本的解法啦:
func majorityElement(nums []int) int {
count := 0
candidate := 0
for _,v := range nums {
if count == 0 {
candidate = v
}
if v == candidate {
count++
} else {
count --
}
}
return candidate
}