这是我参与「第五届青训营 」伴学笔记创作活动的第19天
1.什么是Redis
1.1为什么需要Redis
- 数据从单表,演进出了分库分表
- MySQL从单机演进出了集群
- 数据量增长
- 读写数据压力的不断增加
- 数据分冷热(热数据:经常被访问到的数据),将热数据存储到内存中
1.2Redis基本原理
- 数据从内存中读写
- 数据保存到硬盘上防止重启数据丢失(增量数据保存到AOF文件、全量数据RDB文件)
- 单线程处理所有操作命令
2.Redis应用案例
2.1连续签到
- 使用String数据结构
- 可以存储 字符串、数字、二进制数据
- 通常和expire配合
- 使用场景:存储计数、Session
2.2消息通知
- 用list作为消息队列
- List数据结构Quicklist,Quicklist由一个双向链表和listpack实现
2.3计数
一个用户有多项计数需求,可通过hash结构存储
Hash数据结构dict
rehash: rehash操作是将ht[0]中的数据全部迁移到ht[1]中。数据量小的场景下直接将数据从ht[0]拷贝到ht[1]速度是较快的。数据量大的场景,例如存有上百万的KV时,迁移过程将会明显阻塞用户请求。 渐进式rehash:为避免出现这种情况,使用了rehash方案。基本原理就是,每次用户访问时都会迁移少量数据。将整个迁移过程,平摊到所有的访问用不请求过程中。
2.4排行榜
积分变化时,排名要实时变更,结合dict后,可实现通过key操作跳表的功能
2.5限流
- 要求1秒内放行的请求为N,超过N则禁止访问
- Key: comment_freq_limit_1671356046
- 对这个Key调用incr,超过限制N则禁止访问1671356046 是当前时间戳
2.6分布式锁
- 并发场景,要求一次只能有一个协程执行执行完成后,其它等待中的协程才能执行
- 可以使用redis的setnx实现,利用了两个特性
- Redis是单线程执行命令
- setnx只有未设置过才能执行成功
3.Redis的使用注意事项
3.1大Key和热Key
3.1.1大Key
| 数据类型 | 大Key标准 |
| String | value的字节数大于10KB即为大Key |
| Hash、Set、Zset、list | 元素个数大于5000个或总value字节数大于10MB即为大key |
3.1.2大Key的危害
- 读取成本高
- 容易导致慢查询(过期、删除)
- 主从复制异常,服务阻塞
- 无法正常响应请求
3.1.3消除大Key的方法
1.拆分
将大key拆分为小key。例如一个String拆分成多个String(新问题是业务复杂)
2.压缩
将value压缩后写入redis,读取时解压后再使用。压缩算法可以是gzip、snappy、Iz4等。通常情况下,一个压缩算法压缩率高、则解压耗时就长。需要对实际数据进行测试后,选择一个合适的算法,如果存储的是JSON字符串,可以考虑使用MessagePack进行序列化。
3.集合类结构hash、list、 set
- 拆分:可以用hash取余、位掩码的方式决定放在哪个key中
- 区分冷热:如榜单列表场景使用zset,只缓存前10页数据,后续数据走db
3.1.4热Key
用户访问一个Key的QPS特别高,导致Server实例出现CPU负载突增或者不均的情况热key没有明确的标准,QPS 超过500就有可能被识别为热Key
3.1.5解决热Key的方法
1.设置Localcache
在访问Redis前,在业务服务侧设置Localcache,降低访问Redis的QPS。LocalCache中缓存过期或未命中则从Redis中将数据更新到LocalCache。Java的Guava、 Golang的Bigcache就是这LocalCache
2.拆分
将key:value这一个热Key复制写入多份,例如key1:value,key2:value,访问的时候访问多个key,但value是同一个以此将qps分散到不同实例上,降低负载。代价是,更新时需要更新多个key,存在数据短暂不一致的风险
3.使用Redis代理的热Key承载能力
字节跳动的Redis访问代理就具备热Key承载能力。本质上是结合了“热Key发现”、“LocalCache”两个功能
3.2慢查询场景
容易导致redis慢查询的操作
- (1)批量操作一次性传入过多的key/value,如mset/hmset/sadd/zadd等o(n)操作建议单批次不要超过100,超过100之后性能下降明显。
- (2)zset大部分命令都是o(log(n)),当大小超过5k以上时,简单的zadd/zrem也可能导致慢查询
- (3)操作的单个value过大,超过10KB。也即,避免使用大Key
- (4)对大key的delete/expire操作也可能导致慢查询,Redis4.0之前不支持异步删除unlink,大key删除会阻塞Redis
3.3缓存穿透、缓存雪崩
- 缓存穿透:热点数据查询绕过缓存,直接查询数据库
- 缓存雪崩:大量缓存同时过期
3.3.1缓存穿透的危害
(1)查询一个一定不存在的数据
通常不会缓存不存在的数据,这类查询请求都会直接打到db,如果有系统bug或人为攻击那么容易导致db响应慢甚至宕机
(2)缓存过期时
在高并发场景下,一个热key如果过期,会有大量请求同时击穿至db,容易影响db性能和稳定同一时间有大量key集中过期时,也会导致大量请求落到db上,导致查询变慢,甚至出现b无法响应新的查询
3.3.2如何减少缓存穿透
(1)缓存空值
如一个不存在的useriD。这个id在缓存和数据库中都不存在。则可以缓存一个空值,下次再查缓存直接反空值。
(2)布隆过滤器
通过bloom filter算法来存储合法Key,得益于该算法超高的压缩率,只需占用极小的空间就能存储大量key值
3.3.3如何避免缓存雪崩
(1)缓存空值
将缓存失效时间分散开,比如在原有的失效时间基础上增加一个随机值,例如不同Key过期时间可以设置为 10分1秒过期,10分23秒过期,10分8秒过期。单位秒部分就是随机时间,这样过期时间就分散了.对于热点数据,过期时间尽量设置得长一些,冷门的数据可以相对设置过期时间短一些
(2)使用缓存集群
避免单机宕机造成的缓存雪崩。