基于MATLAB的LDPC编译码误码率仿真,仿真调制为64QAM,对比不同译码迭代次数

261 阅读3分钟

1.算法描述

       LDPC码是麻省理工学院Robert Gallager于1963年在博士论文中提出的一种具有稀疏校验矩阵的分组纠错码。几乎适用于所有的信道,因此成为编码界近年来的研究热点。它的性能逼近香农极限,且描述和实现简单,易于进行理论分析和研究,译码简单且可实行并行操作,适合硬件实现。

 

        LDPC仿真系统图LDPC 码的奇偶校验矩阵H是一个稀疏矩阵,相对于行与列的长度,校验矩阵每行、列中非零元素的数目(我们习惯称作行重、列重)非常小,这也是LDPC码之所以称为低密度码的原因。由于校验矩阵H的稀疏性以及构造时所使用的不同规则,使得不同LDPC码的编码二分图(Taner图)具有不同的闭合环路分布。而二分图中闭合环路是影响LDPC码性能的重要因素,它使得LDPC码在类似可信度传播(Belief ProPagation)算法的一类迭代译码算法下,表现出完全不同的译码性能。

       当H的行重和列重保持不变或尽可能的保持均匀时,我们称这样的LDPC码为正则LDPC码,反之如果列、行重变化差异较大时,称为非正则的LDPC码。研究结果表明正确设计的非正则LDPC码的性能要优于正则LDPC。根据校验矩阵H中的元素是属于GF(2)还是GF(q)(q=2p),我们还可以将LDPC码分为二元域或多元域的LDPC码。研究表明多元域LDPC码的性能要比二元域的好。

 

       在LDPC编码中,会用到一个叫做H矩阵的校验矩阵(Parity Check Matrix),比如,我们来看一个简单的H矩阵:

 

1.jpeg

 

为了可以更加直观的理解H矩阵,可以借助Tanner图,来表示H矩阵:

 

2.jpeg

 

       64QAM(Quadrature Amplitude Modulation,相正交振幅调制),在使用同轴电缆的网络中,这种数字频率调制技术通常用于发送下行数据。64QAM在一个6MHz信道中,64QAM传输速率很高,最高可以支持38.015Mbps的峰值传输速率。但是,对干扰信号很敏感,使得它很难适应嘈杂的上行传输(从电缆用户到因特网)。参见QPSK, DQPSK, CDMA, S-CDMA, BPSK和VSB。

       它的调制效率高,对传输途径的信噪比要求高,具有带宽利用率高的特点,适合有线电视电缆传输;我国有线电视网中广泛应用的DVB-C 调制即QAM 调制方式。QAM是幅度和相位联合调制的技术,它同时利用了载波的幅度和相位来传递信息比特,不同的幅度和相位代表不同的编码符号。因此,在最小距离相同的条件下,QAM星座图中可以容纳更多的星座点即可实现更高的频带利用率。

 

 

2.仿真效果预览

matlab2022a仿真结果如下:

  3.png

4.png

 

 

 

 

3.MATLAB核心程序 `clc;

clear;

close all;

warning off;

addpath(genpath(pwd));

 

load G.mat;

load H.mat;

 

 

max_iter=1;

L_frame=size(G,1);

n_frame=200;

start=0;

step=2;

finish=12;

r=size(G,1)/size(G,2);

M=6;

Es=42;   % 一个64QAM符号能量 也是信号功率

Eb=Es/M;

plot_pe=[];

Q=1;

 

%  err_list_index=1;  % used by test

axis_EbN0=start:step:finish;

%******************************************************

for EbN0=start:step:finish;

    Liner_EbN0=10^(EbN0/10);

    pe_number=0;

    variance=0.5*(Eb/Liner_EbN0)/r;  % 噪声方差, 来源于a^2/(2delta^2)=Liner_EbN0,a^2信息幅值的平方即比特能量, 2delta^2=N0.    N0/r得到编码后的噪声功率谱密度

   

    for number_frame=1:n_frame       

 

        [EbN0,number_frame]

        

        x_msg = (sign(randn(1,size(G,1)))+1)/2; % random bits

        x_code_msg= mod(x_msg*G,2); % coding

        in=x_code_msg;

 

        x_tx_msg= QAM64m(in); % 16QAM modulation

        

        real_tx=real(x_tx_msg);  imag_tx=imag(x_tx_msg);

 

        waveform= x_tx_msg+sqrt(variance)*( randn(size(real_tx)) + randn(size(imag_tx))*i ) ; % AWGN transmission

        

        [f0,f1]=QAM64d(waveform,2*variance);

        LLR=log(f0./(f1+eps));

 

        [z_hat, success, k] = log_ldpc_decode(H,LLR,max_iter);; % likelihoods

        

      

        x_dec_msg = z_hat(1:size(G,1)); %  码率1/2 时使用

        

 

        

        pe_number=pe_number+sum(x_msg~=x_dec_msg);

        

        current_time=fix(clock);

       fprintf('i am working %g,total(%g)      %g年  %g月  %g日  %g时  %g分  %g秒\n\n',Q,(((finish-start)/step)+1)*n_frame,current_time(1),current_time(2),current_time(3),current_time(4),current_time(5),current_time(6))

        Q=Q+1;

        fprintf('\n\n')

        

    end

    pe=pe_number/(L_frame*n_frame);

    plot_pe=[plot_pe,pe];

end`