Docker 安装

256 阅读18分钟

1. Docker 是什么

其实就是一个容器管理引擎

1.1 容器是什么

从字面上来看,容器就是Container,一般把它形象地比喻成现实世界里的集装箱,它也正好和Docker的现实含义相对应,因为码头工人(那只可爱的小鲸鱼)就是不停地在搬运集装箱。

集装箱的作用是标准化封装各种货物,一旦打包完成之后,就可以从一个地方迁移到任意的其他地方。相比散装形式而言,集装箱隔离了箱内箱外两个世界,保持了货物的原始形态,避免了内外部相互干扰,极大地简化了商品的存储、运输、管理等工作。

再回到我们的计算机世界,容器也发挥着同样的作用,不过它封装的货物是运行中的应用程序,也就是进程,同样它也会把进程与外界隔离开,让进程与外部系统互不影响。

容器,就是一个特殊的隔离环境,它能够让进程只看到这个环境里的有限信息,不能对外界环境施加影响

那么,很自然地,我们会产生另外一个问题:为什么需要创建这样的一个隔离环境,直接让进程在系统里运行不好吗?

1.2 为什么要隔离

1. 系统安全

在计算机世界里的隔离是出于系统安全的考虑

对于Linux操作系统来说,一个不受任何限制的应用程序是十分危险的。这个进程能够看到系统里所有的文件、所有的进程、所有的网络流量,访问内存里的任何数据,那么恶意程序很容易就会把系统搞瘫痪,正常程序也可能会因为无意的Bug导致信息泄漏或者其他安全事故。虽然Linux提供了用户权限控制,能够限制进程只访问某些资源,但这个机制还是比较薄弱的,和真正的“隔离”需求相差得很远。

而现在,使用容器技术,我们就可以让应用程序运行在一个有严密防护的“沙盒”(Sandbox)环境之内,就好像是把进程放进“集装箱”,它可以在这个环境里自由活动,但绝不允许“越界”,从而保证了容器外系统的安全。

另外,在计算机里有各种各样的资源,CPU、内存、硬盘、网卡,虽然目前的高性能服务器都是几十核CPU、上百GB的内存、数TB的硬盘、万兆网卡,但这些资源终究是有限的,而且考虑到成本,也不允许某个应用程序无限制地占用。

2. 资源隔离

容器技术的另一个本领就是为应用程序加上资源隔离,在系统里切分出一部分资源,让它只能使用指定的配额,比如只能使用一个CPU,只能使用1GB内存等等,这样就可以避免容器内进程的过度系统消耗,充分利用计算机硬件,让有限的资源能够提供稳定可靠的服务。

所以,虽然进程被“关”在了容器里,损失了一些自由,但却保证了整个系统的安全。而且只要进程遵守隔离规定,不做什么出格的事情,也完全是可以正常运行的。

为什么会有Docker出现

一款产品从开发到上线,从操作系统,到运行环境,再到应用配置。作为开发+运维之间的协作需要关心很多西,这也是很多互联网公司都不得不面对的问题,特别是各种版本的迭代之后,不同版本环境的兼容,对运维人员都是考验。

Docker之所以发展如此迅速,也是因为它对此给出了一个标准化的解决方案。

环境配置如此麻烦,换一台机器,就要重来一次,费时费力。很多人想到,能不能从根本上解决问题,软件可以带环境安装?也就是说安装软件的时候,把原始环境一模一样的复制过去,开发人员利用 Docker 可以消除协作编码时“在我的机器上可正常工作”的问题。

之前在服务器配置一个应用的运行环境,要安装各种各样的软件,例如一个web系统 就要有java/tomcat/mysql/jdbc驱动包等。安装和配置这些东西很麻烦,而且他还不能跨平台。假如我们是在window上安装的这些环境。到了linux上又要重新安装一篇,况且就算不跨平台,换一个同样环境的服务器,要移植应用也很麻烦

传统上认为,软件编码开发、测试结束后,所产出的结果即是程序或者能够编译执行的二进制字节码等。而为了让这些程序可以顺利的执行,开发团队也得准备完整的部署文件,让运维团队部署应用程序,开发需要清楚的告诉运维团队,用的全部配置文件+所有软件环境。不过,即使如此,仍然常常发生部署失败的状况。Docker镜像的设计,使用Docker得以打破过去【程序即应用】的观念。透过镜像(images)将作业系统核心,运作应用程式所需要的系统环境,由下而上打包,达到应用程式跨平台间的无缝接轨运作。

Docker理念

Docker是基于Go语言实现的云开源项目。

Docker的主要目标是“Build,Ship and Run Any App,Anywhere”,也就是通过对应用组件的封装、分发、部署、运行等生命周期的管理,使用户的APP(可以是一个WEB应用或数据库应用等等)及其运行环境能够做到“一次封装,到处运行”。

Linux 容器技术的出现就解决了这样一个问题,而 Docker 就是在它的基础上发展过来的。将应用运行在 Docker 容器上面,而 Docker 容器在任何操作系统上都是一致的,这就实现了跨平台、跨服务器。只需要一次配置好环境,换到别的机子上就可以一键部署好,大大简化了操作

总结

解决了运行环境和配置软件容器,方便做持续集成并有助于整体发布的容器虚拟化技术

2 Docker 能做什么

2.1 与虚拟机的区别是什么

image.png

首先,容器和虚拟机的目的都是隔离资源保证系统安全,然后是尽量提高资源的利用率。

之前在使用创建虚拟机的时候,它们能够在宿主机系统里完整虚拟化出一套计算机硬件,在里面还能够安装任意的操作系统,这内外两个系统也同样是完全隔离,互不干扰

而在数据中心的服务器上,虚拟机软件(即图中的Hypervisor)同样可以把一台物理服务器虚拟成多台逻辑服务器,这些逻辑服务器彼此独立,可以按需分隔物理服务器的资源,为不同的用户所使用。

从实现的角度来看,虚拟机虚拟化出来的是硬件,需要在上面再安装一个操作系统后才能够运行应用程序,而硬件虚拟化和操作系统都比较“重”,会消耗大量的CPU、内存、硬盘等系统资源,但这些消耗其实并没有带来什么价值,属于“重复劳动”和“无用功”,不过好处就是隔离程度非常高,每个虚拟机之间可以做到完全无干扰。

我们再来看容器(即图中的Docker),它直接利用了下层的计算机硬件和操作系统,因为比虚拟机少了一层,所以自然就会节约CPU和内存,显得非常轻量级,能够更高效地利用硬件资源。不过,因为多个容器共用操作系统内核,应用程序的隔离程度就没有虚拟机那么高了。

比较了 Docker 和传统虚拟化方式的不同之处:

  • 传统虚拟机技术是虚拟出一套硬件后,在其上运行一个完整操作系统,在该系统上再运行所需应用进程;
  • 而容器内的应用进程直接运行于宿主的内核,容器内没有自己的内核,而且也没有进行硬件虚拟。因此容器要比传统虚拟机更为轻便。
  • 每个容器之间互相隔离,每个容器有自己的文件系统 ,容器之间进程不会相互影响,能区分计算资源。

2.2 容器的优点

更高效的利用系统资源

由于容器不需要进行硬件虚拟以及运行完整操作系统等额外开销,Docker 对系统资源的利用率更高。无论是应用执行速度、内存损耗或者文件存储速度,都要比传统虚拟机技术更高效。因此,相比虚拟机技术,一个相同配置的主机,往往可以运行更多数量的应用。

更快速的启动时间

传统的虚拟机技术启动应用服务往往需要数分钟,而 Docker 容器应用,由于直接运行于宿主内核,无需启动完整的操作系统,因此可以做到秒级、甚至毫秒级的启动时间。大大的节约了开发、测试、部署的时间。

一致的运行环境

开发过程中一个常见的问题是环境一致性问题。由于开发环境、测试环境、生产环境不一致,导致有些 bug 并未在开发过程中被发现。而 Docker 的镜像提供了除内核外完整的运行时环境,确保了应用运行环境一致性,从而不会再出现 「这段代码在我机器上没问题啊」 这类问题。

持续交付和部署

对开发和运维(DevOps)人员来说,最希望的就是一次创建或配置,可以在任意地方正常运行。

使用 Docker 可以通过定制应用镜像来实现持续集成、持续交付、部署。开发人员可以通过 Dockerfile 来进行镜像构建,并结合 持续集成(Continuous Integration) 系统进行集成测试,而运维人员则可以直接在生产环境中快速部署该镜像,甚至结合 持续部署(Continuous Delivery/Deployment) 系统进行自动部署。

而且使用 Dockerfile 使镜像构建透明化,不仅仅开发团队可以理解应用运行环境,也方便运维团队理解应用运行所需条件,帮助更好的生产环境中部署该镜像

更轻松的迁移

由于 Docker 确保了执行环境的一致性,使得应用的迁移更加容易。Docker 可以在很多平台上运行,无论是物理机、虚拟机、公有云、私有云,甚至是笔记本,其运行结果是一致的。因此用户可以很轻易的将在一个平台上运行的应用,迁移到另一个平台上,而不用担心运行环境的变化导致应用无法正常运行的情况。

更轻松的维护和扩展

Docker 使用的分层存储以及镜像的技术,使得应用重复部分的复用更为容易,也使得应用的维护更新更加简单,基于基础镜像进一步扩展镜像也变得非常简单。此外,Docker 团队同各个开源项目团队一起维护了一大批高质量的 官方镜像,既可以直接在生产环境使用,又可以作为基础进一步定制,大大的降低了应用服务的镜像制作成本。

3 Docker 安装

3.1 前提条件

Docker支持以下的CentOS版本:

  • CentOS 7 (64-bit)

目前,CentOS 仅发行版本中的内核支持 Docker。

  • Docker 运行在 CentOS 7 上,要求系统为64位、系统内核版本为 3.10 以上。

3.1.1 查看自己的内核

uname命令用于打印当前系统相关信息(内核版本号、硬件架构、主机名称和操作系统类型等)

[root@bagua01 backups]# uname -r
3.10.0-957.21.3.el7.x86_64

3.2 Docker 架构图

3.2.1 镜像(Image)

Docker 镜像(Image)就是一个只读的模板。镜像可以用来创建 Docker 容器,一个镜像可以创建很多容器。

其实我们在其他场合中也曾经见到过“镜像”这个词,比如最常见的光盘镜像,重装电脑时使用的硬盘镜像,还有虚拟机系统镜像。这些“镜像”都有一些相同点:只读,不允许修改,以标准格式存储了一系列的文件,然后在需要的时候再从中提取出数据运行起来。

容器技术里的镜像也是同样的道理。因为容器是由操作系统动态创建的,那么必然就可以用一种办法把它的初始环境给固化下来,保存成一个静态的文件,相当于是把容器给“拍扁”了,这样就可以非常方便地存放、传输、版本化管理了。

从功能上来看,镜像和常见的tar、rpm、deb等安装包一样,都打包了应用程序,但最大的不同点在于它里面不仅有基本的可执行文件,还有应用运行时的整个系统环境。这就让镜像具有了非常好的跨平台便携性和兼容性,能够让开发者在一个系统上开发(例如Ubuntu),然后打包成镜像,再去另一个系统上运行(例如CentOS),完全不需要考虑环境依赖的问题,是一种更高级的应用打包方式

所谓的“容器化的应用”,或者“应用的容器化”,就是指应用程序不再直接和操作系统打交道,而是封装成镜像,再交给容器环境去运行。

3.2.2 容器(Container)

镜像(Image)和容器(Container)的关系,就像是面向对象程序设计中的 类 和 实例 一样,镜像是静态的定义,容器是镜像运行时的实体。

镜像和容器的关系我们也可以用编程里的“ 序列化’和“ 反序列化 ”来理解,镜像就是被序列化后磁盘上的数据,容器就是反序列化后内存里的对象。

容器的实质是进程,但与直接在宿主执行的进程不同,容器进程运行于属于自己的独立的 命名空间。因此容器可以拥有自己的 root 文件系统、自己的网络配置、自己的进程空间,甚至自己的用户 ID 空间。容器内的进程是运行在一个隔离的环境里,使用起来,就好像是在一个独立于宿主的系统下操作一样。这种特性使得容器封装的应用比直接在宿主运行更加安全。也因为这种隔离的特性。

前面讲过镜像使用的是分层存储,容器也是如此。每一个容器运行时,是以镜像为基础层,在其上创建一个当前容器的存储层,我们可以称这个为容器运行时读写而准备的存储层为 容器存储层

容器存储层的生存周期和容器一样,容器消亡时,容器存储层也随之消亡。因此,任何保存于容器存储层的信息都会随容器删除而丢失。

按照 Docker 最佳实践的要求,容器不应该向其存储层内写入任何数据,容器存储层要保持无状态化。所有的文件写入操作,都应该使用 数据卷(Volume)、或者 绑定宿主目录,在这些位置的读写会跳过容器存储层,直接对宿主(或网络存储)发生读写,其性能和稳定性更高。

数据卷的生存周期独立于容器,容器消亡,数据卷不会消亡。因此,使用数据卷后,容器删除或者重新运行之后,数据却不会丢失。

3.2.3 仓库(Repository)

镜像构建完成后,可以很容易的在当前宿主机上运行,但是,如果需要在其它服务器上使用这个镜像,我们就需要一个集中的存储、分发镜像的服务,Docker Registry 就是这样的服务。

一个 Docker Registry 中可以包含多个 仓库(Repository);每个仓库可以包含多个 标签(Tag);每个标签对应一个镜像。

通常,一个仓库会包含同一个软件不同版本的镜像,而标签就常用于对应该软件的各个版本。我们可以通过 <仓库名>:<标签> 的格式来指定具体是这个软件哪个版本的镜像。如果不给出标签,将以 latest 作为默认标签。

以 Ubuntu 镜像 为例,ubuntu 是仓库的名字,其内包含有不同的版本标签,如,16.04, 18.04。我们可以通过 ubuntu:16.04,或者 ubuntu:18.04 来具体指定所需哪个版本的镜像。如果忽略了标签,比如 ubuntu,那将视为 ubuntu:latest。

仓库名经常以 两段式路径 形式出现,比如 jwilder/nginx-proxy,前者往往意味着 Docker Registry 多用户环境下的用户名,后者则往往是对应的软件名。但这并非绝对,取决于所使用的具体 Docker Registry 的软件或服务。

3.2.4 总结

Docker 本身是一个容器运行载体或称之为管理引擎。我们把应用程序和配置依赖打包好形成一个可交付的运行环境,这个打包好的运行环境就似乎 image镜像文件。只有通过这个镜像文件才能生成 Docker 容器。image 文件可以看作是容器的模板。Docker 根据 image 文件生成容器的实例。同一个 image 文件,可以生成多个同时运行的容器实例。

  • image 文件生成的容器实例,本身也是一个文件,称为镜像文件。
  • 一个容器运行一种服务,当我们需要的时候,就可以通过docker客户端创建一个对应的运行实例,也就是我们的容器
  • 至于仓储,就是放了一堆镜像的地方,我们可以把镜像发布到仓储中,需要的时候从仓储中拉下来就可以了。

4 Docker 安装步骤(CentOS7)

4.1 查看 centOS版本

[root@bagua01 backups]# cat /etc/redhat-release 
CentOS Linux release 7.6.1810 (Core)

4.2 yum 安装gcc 相关

yum -y install gcc
yum -y install gcc-c++
## 查看安装gcc版本
gcc -v

4.3 卸载旧版本

如果之前安装过docker需要卸载,没有安装过,可以直接跳过

yum -y remove docker docker-common docker-selinux docker-engine
yum remove docker \
   docker-client \
   docker-client-latest \
   docker-common \
   docker-latest \
   docker-latest-logrotate \
   docker-logrotate \
   docker-selinux \
   docker-engine-selinux \
   docker-engine

4.4 安装需要的软件包

yum install -y yum-utils device-mapper-persistent-data lvm2

4.5 设置stable镜像仓库

yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

4.6 更新yum软件包索引

yum makecache fast

4.7 安装Docker CE

yum -y install docker-ce

4.8 启动docker

systemctl start docker

4.9 docker version 验证

[root@bagua01 backups]# docker version
Client: Docker Engine - Community
 Version:           19.03.1
 API version:       1.40
 Go version:        go1.12.5
 Git commit:        74b1e89
 Built:             Thu Jul 25 21:21:07 2019
 OS/Arch:           linux/amd64
 Experimental:      false

Server: Docker Engine - Community
 Engine:
  Version:          19.03.1
  API version:      1.40 (minimum version 1.12)
  Go version:       go1.12.5
  Git commit:       74b1e89
  Built:            Thu Jul 25 21:19:36 2019
  OS/Arch:          linux/amd64
  Experimental:     false
 containerd:
  Version:          1.2.6
  GitCommit:        894b81a4b802e4eb2a91d1ce216b8817763c29fb
 runc:
  Version:          1.0.0-rc8
  GitCommit:        425e105d5a03fabd737a126ad93d62a9eeede87f
 docker-init:
  Version:          0.18.0
  GitCommit:        fec3683

4.10 配置镜像加速

sudo mkdir -p /etc/docker
sudo tee /etc/docker/daemon.json <<-'EOF'
{
  "registry-mirrors": ["https://exxxxxxxx.com"]
}
EOF
sudo systemctl daemon-reload
sudo systemctl restart docker

4.11 推卸

systemctl stop docker 
yum -y remove docker-ce
rm -rf /var/lib/docker

4.12 镜像加速

鉴于国内网络问题,后续拉取 Docker 镜像十分缓慢,我们可以需要配置加速器来解决,

我使用的是阿里云的本人自己账号的镜像地址(需要自己注册有一个属于你自己的): cr.console.aliyun.com

4.13 Docker run hello-world

[root@bagua01 docker]# docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
0e03bdcc26d7: Pull complete 
Digest: sha256:6a65f928fb91fcfbc963f7aa6d57c8eeb426ad9a20c7ee045538ef34847f44f1
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
    (amd64)
 3. The Docker daemon created a new container from that image which runs the
    executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
    to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
 https://hub.docker.com/

For more examples and ideas, visit:
 https://docs.docker.com/get-started/

输出这段提示以后,hello world就会停止运行,容器自动终止。

[root@bagua01 docker]# docker run hello-world
Unable to find image 'hello-world:latest' locally
docker: Error response from daemon: Get https://registry-1.docker.io/v2/library/hello-world/manifests/latest: Get https://auth.docker.io/token?scope=repository%3Alibrary%2Fhello-world%3Apull&service=registry.docker.io: net/http: request canceled (Client.Timeout exceeded while awaiting headers).
See 'docker run --help'.

5 run 做了什么