这是我参与「第五届青训营 」笔记创作活动的第7天
引言
- 性能优化
- 业务层优化
- 针对特定场景,具体问题,具体分析
- 容易获得较大性能收益
- 语言运行时优化
- 解决更通用的性能问题
- 考虑更多场景
- Tradeoffs
- 数据驱动
- 自动化性能分析工具 —— pprof
- 依靠数据而非猜测
- 首先优化最大瓶颈
- 业务层优化
自动内存管理
基本概念
- 自动内存管理:由程序语言的运行时系统管理动态内存
- 避免手动内存管理,专注于实现业务逻辑
- 保证内存使用的正确性和安全性: double-free problem, use-after-free problem
- 三个任务
- 为新对象分配空间
- 找到存活对象
- 回收死亡对象的内存空间
TCMalloc
go内存管理是借鉴了TCMalloc的设计思想,TCMalloc全称Thead-Caching Malloc,是google开发的内存分配器。
简单点理解:从右向左一层一层申请/放回空闲块
Page
操作系统对内存管理以页为单位,TCMalloc也是这样,只不过TCMalloc里的Page大小与操作系统里的大小并不一定相等,而是倍数关系。
Span
一组连续的Page被称为Span,比如可以有4个页大小的Span,也可以有8个页大小的Span,Span比Page高一个层级,是为了方便管理一定大小的内存区域,Span是TCMalloc中内存管理的基本单位。
ThreadCache
每个线程各自的Cache,一个Cache包含多个空闲内存块链表,每个链表连接的都是内存块,同一个链表上内存块的大小是相同的,也可以说按内存块大小,给内存块分了个类,这样可以根据申请的内存大小,快速从合适的链表选择空闲内存块。由于每个线程有自己的ThreadCache,所以ThreadCache访问是无锁的。
CentralCache
是所有线程共享的缓存,也是保存的空闲内存块链表,链表的数量与ThreadCache中链表数量相同,当ThreadCache内存块不足时,可以从CentralCache取,当ThreadCache内存块多时,可以放回CentralCache。由于CentralCache是共享的,所以它的访问是要加锁的。
PageHeap
PageHeap是堆内存的抽象,PageHeap存的也是若干链表,链表保存的是Span,当CentralCache没有内存的时,会从PageHeap取,把1个Span拆成若干内存块,添加到对应大小的链表中,当CentralCache内存多的时候,会放回PageHeap。
TCMalloc对象分配
小对象直接从ThreadCache分配,若ThreadCache不够则从CentralCache中获取内存,CentralCache内存不够时会再从PageHeap获取内存,大对象在PageHeap中选择合适的页组成span用于存储数据。
Go 内存管理
- 目标:为对象在 heap 上分配内存
- 提前将内存分块
- 调用系统调用 mmap() 向 OS 申请一大块内存,例如 4 MB
- 先将内存划分成大块,例如 8 KB,称作 mspan
- 再将大块继续划分成特定大小的小块,用于对象分配
- noscan mspan: 分配不包含指针的对象 —— GC 不需要扫描
- scan mspan: 分配包含指针的对象 —— GC 需要扫描
- 对象分配:根据对象的大小,选择最合适的块返回
- 内存缓存
- Go 内存管理构成了多级缓存机制,从 OS 分配得的内存被内存管理回收后,也不会立刻归还给 OS,而是在 Go runtime 内部先缓存起来,从而避免频繁向 OS 申请内存。
Go 内存管理的问题
mspan, mcache 和 mcentral 构成了内存管理的多级缓存机制。
- 对象分配是非常高频的操作:每秒分配 GB 级别的内存
- 线上 profiling 可以发现,Go 的内存分配占用很多 CPU
- 小对象分配占大多数
优化分配小对象是关键
字节的解决方案:
- Balanced GC
- 核心:将 noscan 对象在 per-g allocation buffer (GAB) 上分配,并使用移动对象 GC 管理这部分内存,提高对象分配和回收效率