Go 语言内存管理详解| 青训营笔记

192 阅读4分钟

这是我参与「第五届青训营 」笔记创作活动的第7天

引言

  • 性能优化
    • 业务层优化
      • 针对特定场景,具体问题,具体分析
      • 容易获得较大性能收益
    • 语言运行时优化
      • 解决更通用的性能问题
      • 考虑更多场景
      • Tradeoffs
    • 数据驱动
      • 自动化性能分析工具 —— pprof
      • 依靠数据而非猜测
      • 首先优化最大瓶颈

自动内存管理

基本概念

  • 自动内存管理:由程序语言的运行时系统管理动态内存
  • 避免手动内存管理,专注于实现业务逻辑
  • 保证内存使用的正确性安全性: double-free problem, use-after-free problem
  • 三个任务
    • 为新对象分配空间
    • 找到存活对象
    • 回收死亡对象的内存空间

TCMalloc

go内存管理是借鉴了TCMalloc的设计思想,TCMalloc全称Thead-Caching Malloc,是google开发的内存分配器。

TCMalloc参考

image.png

简单点理解:从右向左一层一层申请/放回空闲块

Page

操作系统对内存管理以页为单位,TCMalloc也是这样,只不过TCMalloc里的Page大小与操作系统里的大小并不一定相等,而是倍数关系。

Span

一组连续的Page被称为Span,比如可以有4个页大小的Span,也可以有8个页大小的Span,Span比Page高一个层级,是为了方便管理一定大小的内存区域,Span是TCMalloc中内存管理的基本单位。

ThreadCache

每个线程各自的Cache,一个Cache包含多个空闲内存块链表,每个链表连接的都是内存块,同一个链表上内存块的大小是相同的,也可以说按内存块大小,给内存块分了个类,这样可以根据申请的内存大小,快速从合适的链表选择空闲内存块。由于每个线程有自己的ThreadCache,所以ThreadCache访问是无锁的。

CentralCache

是所有线程共享的缓存,也是保存的空闲内存块链表,链表的数量与ThreadCache中链表数量相同,当ThreadCache内存块不足时,可以从CentralCache取,当ThreadCache内存块多时,可以放回CentralCache。由于CentralCache是共享的,所以它的访问是要加锁的。

PageHeap

PageHeap是堆内存的抽象,PageHeap存的也是若干链表,链表保存的是Span,当CentralCache没有内存的时,会从PageHeap取,把1个Span拆成若干内存块,添加到对应大小的链表中,当CentralCache内存多的时候,会放回PageHeap。

TCMalloc对象分配

小对象直接从ThreadCache分配,若ThreadCache不够则从CentralCache中获取内存,CentralCache内存不够时会再从PageHeap获取内存,大对象在PageHeap中选择合适的页组成span用于存储数据。

Go 内存管理

image.png

  • 目标:为对象在 heap 上分配内存
  • 提前将内存分块
    • 调用系统调用 mmap() 向 OS 申请一大块内存,例如 4 MB
    • 先将内存划分成大块,例如 8 KB,称作 mspan
    • 再将大块继续划分成特定大小的小块,用于对象分配
    • noscan mspan: 分配不包含指针的对象 —— GC 不需要扫描
    • scan mspan: 分配包含指针的对象 —— GC 需要扫描
  • 对象分配:根据对象的大小,选择最合适的块返回
  • 内存缓存
    • Go 内存管理构成了多级缓存机制,从 OS 分配得的内存被内存管理回收后,也不会立刻归还给 OS,而是在 Go runtime 内部先缓存起来,从而避免频繁向 OS 申请内存。

参考

Go 内存管理的问题

mspan, mcache 和 mcentral 构成了内存管理的多级缓存机制。

  • 对象分配是非常高频的操作:每秒分配 GB 级别的内存
  • 线上 profiling 可以发现,Go 的内存分配占用很多 CPU
  • 小对象分配占大多数

优化分配小对象是关键

字节的解决方案:

  • Balanced GC
  • 核心:将 noscan 对象在 per-g allocation buffer (GAB) 上分配,并使用移动对象 GC 管理这部分内存,提高对象分配和回收效率