当青训营遇上码上掘金
主题 4:攒青豆
现有 nnn 个宽度为 111 的柱子,给出 nnn 个非负整数依次表示柱子的高度,排列后如下图所示,此时均匀从上空向下撒青豆,计算按此排列的柱子能接住多少青豆。(不考虑边角堆积)
下面是官方问题图片
以下为上图例子的解析:
输入:height = [5,0,2,1,4,0,1,0,3]
输出:17
解析:上面是由数组 [5,0,2,1,4,0,1,0,3] 表示的柱子高度,在这种情况下,可以接 17 个单位的青豆。
解法一 利用栈方法
单调栈,首先肯定会想到括号匹配了。我们仔细观察蓝色的部分,可以和括号匹配类比下。每次匹配出一对括号(找到对应的一堵墙),就计算这两堵墙中的水。
我们用栈保存每堵墙。
当遍历墙的高度的时候,如果当前高度小于栈顶的墙高度,说明这里会有积水,我们将墙的高度的下标入栈。
如果当前高度大于栈顶的墙的高度,说明之前的积水到这里停下,我们可以计算下有多少积水了。计算完,就把当前的墙继续入栈,作为新的积水的墙。
总体的原则就是,
1.当前高度小于等于栈顶高度,入栈,指针后移。
2.当前高度大于栈顶高度,出栈,计算出当前墙和栈顶的墙之间水的多少,然后计算当前的高度和新栈的高度的关系,重复第 2 步。直到当前墙的高度不大于栈顶高度或者栈空,然后把当前墙入栈,指针后移。
package com.m.trapping_rain_water.solution1;
import java.util.Stack;
public class Solution1 {
public int trap(int[] height) {
int n = height.length;
int result = 0;
if (n == 0 || n == 1) {
return result;
}
int cur = 0;
Stack<Integer> stack = new Stack<Integer>();
while (cur < n) {
while (!stack.isEmpty() && height[cur] > height[stack.peek()]) {
int top = stack.pop();
if (stack.isEmpty()) {
break;
}
int distance = cur - stack.peek() - 1;
int tempHeight = Math.min(height[cur], height[stack.peek()]) - height[top];
result += tempHeight * distance;
}
stack.push(cur);
cur++;
}
return result;
}
}
解法二 动态规划解法
对数组中的所有元素进行一次预处理:
先从右往左遍历,找到每一根柱子右侧最高的柱子; 再从左往右遍历,找到每一根柱子左侧最高的柱子。 因此,对于每一根柱子,能接住雨水的量,就是左右两侧最高柱子的最小值与当前柱子的高度的差值,最后,将所有的柱子能接住的雨水量相加即可。
首先用两个数组,max_left [i] 代表第 i 列左边最高的墙的高度,max_right[i] 代表第 i 列右边最高的墙的高度。(一定要注意下,第 i 列左(右)边最高的墙,是不包括自身的,和 leetcode 上边的讲的有些不同)
对于 max_left我们其实可以这样求。
max_left [i] = Max(max_left [i-1],height[i-1])。它前边的墙的左边的最高高度和它前边的墙的高度选一个较大的,就是当前列左边最高的墙了。
对于 max_right我们可以这样求。
max_right[i] = Max(max_right[i+1],height[i+1]) 。它后边的墙的右边的最高高度和它后边的墙的高度选一个较大的,就是当前列右边最高的墙了。
public int trap(int[] height) {
int sum = 0;
int[] max_left = new int[height.length];
int[] max_right = new int[height.length];
for (int i = 1; i < height.length - 1; i++) {
max_left[i] = Math.max(max_left[i - 1], height[i - 1]);
}
for (int i = height.length - 2; i >= 0; i--) {
max_right[i] = Math.max(max_right[i + 1], height[i + 1]);
}
for (int i = 1; i < height.length - 1; i++) {
int min = Math.min(max_left[i], max_right[i]);
if (min > height[i]) {
sum = sum + (min - height[i]);
}
}
return sum;
}