IP协议基础

268 阅读19分钟

IP报文

IP 在 TCP/IP 参考模型中处于第三层,也就是网络层。网络层的主要作用是:实现主机与主机之间的通信,也叫点对点(end to end)通信。

MAC 的作用则是实现「直连」的两个设备之间通信,而 IP 则负责在「没有直连」的两个网络之间进行通信传输。

IP协议是TCP/IP协议族的动力,它为上层协议提供无状态、无连接、不可靠的服务。IP报文格式:

  • 版本号(version):指定IP协议版本。对IPv4来说,其值是4。
  • 头部长度(header length):ihl标识该IP头部有多少个32 bit字(4字节)。因为4位最大能表示15,所以IP头部最长是60字节,最少是20字节。
  • 服务类型(Type Of Service,TOS):4位的TOS字段和1位保留字段(必须置0)。4位的TOS字段分别表示:最小延时,最大吞吐量,最高可靠性和最小费用。其中最多有一个能置为1,应用程序应该根据实际需要来设置它。如像ssh和telnet这样的登录程序需要的是最小延时的服务,而文件传输程序ftp则需要最大吞吐量服务。
  • 总长度(total length):指整个IP数据报的长度,以字节为单位,因此IP数据报的最大长度为65535字节。但由于MTU的限制,长度超过MTU的数据报都将被分片传输,所以实际传输的IP数据报(或分片)的长度都远远没有达到最大值。

接下来的3个字段则描述了如何实现分片。

  • 标识(identification):唯一地标识主机发送的每一个数据报。其初始值由系统随机生成;每发送一个数据报,其值就加1。该值在数据报分片时被复制到每个分片中,因此同一个数据报的所有分片都具有相同的标识值。
  • 3位标志字段的第一位保留。第二位(Don’t Fragment,DF)表示“禁止分片”。如果设置了这个位,IP模块将不对数据报进行分片。在这种情况下,如果IP数据报长度超过MTU的话,IP模块将丢弃该数据报并返回一个ICMP差错报文。第三位(More Fragment,MF)表示“更多分片”。除了数据报的最后一个分片外,其他分片都要把它置1。
  • 13位分片偏移(fragmentation offset)是分片相对原始IP数据报开始处(仅指数据部分)的偏移。实际的偏移值是该值左移3位(乘8)后得到的。由于这个原因,除了最后一个IP分片外,每个IP分片的数据部分的长度必须是8的整数倍(这样才能保证后面的IP分片拥有一个合适的偏移值)。

  • 生存时间(Time To Live,TTL):数据报到达目的地之前允许经过的路由器跳数。TTL值被发送端设置(常见的值是64)。数据报在转发过程中每经过一个路由,该值就被路由器减1。当TTL值减为0时,路由器将丢弃数据报,并向源端发送一个ICMP差错报文。TTL值可以防止数据报陷入路由循环。
  • 协议(protocol):用来区分上层协议,如ICMP是1,TCP是6,UDP是17。
  • 6位头部校验和(header checksum)由发送端填充,接收端对其使用CRC算法以检验IP数据报头部(注意,仅检验头部)在传输过程中是否损坏。
  • 32位的源端IP地址和目的端IP地址:用来标识数据报的发送端和接收端。

IPv4最后一个选项字段(option)是可变长的可选信息。

IP路由

IP协议根据数据包的目的IP地址来决定如何投递它。如果数据包不能直接发送给目标主机,那么IP协议就为它寻找一个合适的下一跳(next hop)路由器,并将数据包交付给该路由器来转发。多次重复这一过程,数据包最终到达目标主机,或者由于发送失败而被丢弃。IP协议使用逐跳(hop by hop)的方式确定通信路径。

当存在多个网卡时,在填写源地址 IP 时,就需要判断到底应该填写哪个地址。这个判断相当于在多块网卡中判断应该使用哪个一块网卡来发送包。这个时候就需要根据路由表规则,来判断哪一个网卡作为源地址 IP。

首先将目的IP与路由表中的条目逐行匹配,与子网掩码按位与操作得到网段,匹配后通过指定网卡发送,如果其他所有条目都无法匹配,就会自动匹配默认网关。后续就把包发给路由器,Gateway 即是路由器的 IP 地址。

IP 地址

在 TCP/IP 网络通信时,为了保证能正常通信,每个设备都需要配置正确的 IP 地址,否则无法实现正常的通信。IP 地址(IPv4 地址)由 32 位正整数来表示,IP 地址在计算机是以二进制的方式处理的。而人类为了方便记忆采用了点分十进制的标记方式,也就是将 32 位 IP 地址以每 8 位为组,共分为 4 组,每组以「.」隔开,再将每组转换成十进制。

那么,IP 地址最大值也就是4294967296,也就说,最大允许 43 亿台计算机连接到网络。实际上,IP 地址并不是根据主机台数来配置的,而是以网卡分配。像服务器、路由器等设备都是有 2 个以上的网卡,也就是它们会有 2 个以上的 IP 地址

IP地址分类

互联网诞生之初,IP 地址显得很充裕,于是计算机科学家们设计了分类地址。IP 地址分类成了 5 种类型,分别是 A 类、B 类、C 类、D 类、E 类。

其中对于 A、B、C 类主要分为两个部分,分别是网络号和主机号

每个网段的最大主机个数,就是要看主机号的位数,如 C 类地址的主机号占 8 位,那么 C 类地址的最大主机个数为28−2=2542^8-2=2542​8​​−2=254

在 IP 地址中,有两个 IP 是特殊的,分别是主机号全为 1 和 全为 0 地址,因此可用主机数要减2。

  • 主机号全为 1 指定某个网络下的所有主机,用于广播
  • 主机号全为 0 指定某个网络

无分类地址CIDR

正因为 IP 分类存在许多缺点,所以后面提出了无分类地址的方案,即 CIDR。这种方式不再有分类地址的概念,32 比特的 IP 地址被划分为两部分,前面是网络号,后面是主机号。表示形式 a.b.c.d/x,其中 /x 表示前 x 位属于网络号, x 的范围是 0 ~ 32,这就使得 IP 地址更加具有灵活性。

如 10.100.122.2/24,这种地址表示形式就是 CIDR,/24 表示前 24 位是网络号,剩余的 8 位是主机号。

子网掩码

另一种划分网络号与主机号形式是子网掩码,掩码的意思就是掩盖掉主机号,剩余的就是网络号。将子网掩码和 IP 地址按位计算 AND,就可得到网络号。

分离网络号和主机号的目的在于两台计算机要通讯,首先要判断是否处于同一个广播域内,即网络地址是否相同。如果网络地址相同,表明接受方在本网络上,那么可以把数据包直接发送到目标主机。路由器寻址工作中,也是通过这样的方式来找到对应的网络号的,进而把数据包转发给对应的网络内。

通过子网掩码可以划分出网络号和主机号,子网掩码还有一个作用,那就是划分子网子网划分实际上是将主机地址分为两个部分:子网网络地址和子网主机地址

  • 未做子网划分的 ip 地址:网络地址+主机地址
  • 做子网划分后的 ip 地址:网络地址+(子网网络地址+子网主机地址)

假设对 C 类地址进行子网划分,网络地址 192.168.1.0,使用子网掩码 255.255.255.192 对其进行子网划分。C 类地址中前 24 位是网络号,最后 8 位是主机号,根据子网掩码可知从 8 位主机号中借用 2 位作为子网号

由于子网网络地址被划分成 2 位,那么子网地址就有 4 个,分别是 00、01、10、11:

公有 IP与私有 IP

在 A、B、C 分类地址,实际上有分公有 IP 地址和私有 IP 地址。

平时办公室、家里、学校用的 IP 地址,一般都是私有 IP 地址。因为这些地址允许组织内部的 IT 人员自己管理、自己分配,而且可以重复。所以,公有 IP 地址是有个组织统一分配的,假设要开一个博客网站,那么就需要去申请购买一个公有 IP,这样全世界的人才能访问。并且公有 IP 地址基本上要在整个互联网范围内保持唯一。

私有 IP 地址通常是内部的 IT 人员管理,公有 IP 地址是由 ICANN 组织管理,中文叫「互联网名称与数字地址分配机构」。IANA 是 ICANN 的其中一个机构,它负责分配互联网 IP 地址,是按州的方式层层分配。其中,在中国是由 CNNIC 的机构进行管理,它是中国国内唯一指定的全局 IP 地址管理的组织。

IP 地址与路由控制

IP地址的网络地址这一部分用于进行路由控制。路由控制表中记录着网络地址与下一步应该发送至路由器的地址。在主机和路由器上都会有各自的路由器控制表。

在发送 IP 包时,首先要确定 IP 包首部中的目标地址,再从路由控制表中找到与该地址具有相同网络地址的记录,根据该记录将 IP 包转发给相应的下一个路由器。如果路由控制表中存在多条相同网络地址的记录,就选择相同位数最多的网络地址,也就是最长匹配。

  1. 主机 A 要发送一个 IP 包,其源地址是 10.1.1.30 和目标地址是 10.1.2.10,由于没有在主机 A 的路由表找到与目标地址 10.1.2.10 相同的网络地址,于是包被转发到默认路由(路由器 1
  2. 路由器 1 收到 IP 包后,也在路由器 1 的路由表匹配与目标地址相同的网络地址记录,发现匹配到了,于是就把 IP 数据包转发到了 10.1.0.2 这台路由器 2
  3. 路由器 2 收到后,同样对比自身的路由表,发现匹配到了,于是把 IP 包从路由器 210.1.2.1 这个接口出去,最终经过交换机把 IP 数据包转发到了目标主机

环回地址

环回地址是在同一台计算机上的程序之间进行网络通信时所使用的一个默认地址。计算机使用一个特殊的 IP 地址 127.0.0.1 作为环回地址。与该地址具有相同意义的是一个叫做 localhost 的主机名。使用这个 IP 或主机名时,数据包不会流向网络。

IP 分片与重组

每种数据链路的最大传输单元 MTU 都是不相同的,如以太网的 MTU 是 1500 字节。每个不同类型的数据链路的使用目的不同,可承载的 MTU 也就不同。

其中最常见数据链路是以太网,它的 MTU 是 1500 字节。那么当 IP 数据包大小大于 MTU 时, IP 数据包就会被分片。经过分片之后的 IP 数据报在被重组的时候,只能由目标主机进行,路由器是不会进行重组的。

假设发送方发送一个 4000 字节的大数据报,若要传输在以太网链路,则需要把数据报分片成 3 个小数据报进行传输,再交由接收方重组成大数据报。

在分片传输中,一旦某个分片丢失,则会造成整个 IP 数据报作废,所以 TCP 引入了 MSS 也就是在 TCP 层进行分片不由 IP 层分片,那么对于 UDP 则尽量不要发送一个大于 MTU 的数据报文。

IPv6

IPv4 的地址是 32 位的,大约可以提供 42 亿个地址,但是早在 2011 年 IPv4 地址就已经被分配完了。IPv6 的地址是 128 位的,还有更好的安全性和扩展性,IPv6 相比于 IPv4 能带来更好的网络体验。

IPv4 和 IPv6 不能相互兼容,所以不但要电脑、手机之类的设备支持,还需要网络运营商对现有的设备进行升级,这可能是 IPv6 普及率比较慢的一个原因。

IPv6 的一些特点:

  • IPv6 可自动配置,即使没有 DHCP 服务器也可以实现自动分配IP地址
  • IPv6 包头包首部长度采用固定的值 40 字节,去掉了包头校验和,简化了首部结构,减轻了路由器负荷,大大提高了传输的性能
  • IPv6 有应对伪造 IP 地址的网络安全功能以及防止线路窃听的功能,大大提升了安全性

IPv4 地址长度共 32 位,是以每 8 位作为一组,并用点分十进制的表示方式。IPv6 地址长度是 128 位,是以每 16 位作为一组,每组用冒号 「:」 隔开。

如果出现连续的 0 时还可以将这些 0 省略,并用两个冒号 「::」隔开。但是,一个 IP 地址中只允许出现一次两个连续的冒号。

IPv6 类似 IPv4,也是通过 IP 地址的前几位标识 IP 地址的种类。IPv6 的地址主要有以下类型地址:

  • 单播地址,用于一对一的通信
  • 组播地址,用于一对多的通信
  • 任播地址,用于通信最近的节点,最近的节点由路由协议决定
  • 没有广播地址

IPv4 首部与 IPv6 首部的差异:

IPv6 相比 IPv4 的首部改进:

  • 取消了首部校验和字段。 因为在数据链路层和传输层都会校验,因此 IPv6 直接取消了 IP 的校验。
  • 取消了分片/重新组装相关字段。 分片与重组是耗时的过程,IPv6 不允许在中间路由器进行分片与重组,这种操作只能在源与目标主机,这将大大提高了路由器转发的速度。
  • 取消选项字段。 选项字段不再是标准 IP 首部的一部分了,但它并没有消失,而是可能出现在 IPv6 首部中的「下一个首部」指出的位置上。删除该选项字段使的 IPv6 的首部成为固定长度的 40 字节。

地址解析协议ARP

在传输一个 IP 数据报的时候,确定了源 IP 地址和目标 IP 地址后,就会通过主机「路由表」确定 IP 数据包下一跳。然而,网络层的下一层是数据链路层,所以还要知道「下一跳」的 MAC 地址。

由于主机的路由表中可以找到下一跳的 IP 地址,所以可以通过 ARP 协议,求得下一跳的 MAC 地址。简单地说,ARP 是借助 ARP 请求与 ARP 响应两种类型的包确定 MAC 地址的。

  • 主机会通过广播发送 ARP 请求,这个包中包含了想要知道的 MAC 地址的主机 IP 地址。
  • 当同个链路中的所有设备收到 ARP 请求时,会去拆开 ARP 请求包里的内容,如果 ARP 请求包中的目标 IP 地址与自己的 IP 地址一致,那么这个设备就将自己的 MAC 地址塞入 ARP 响应包返回给主机。

操作系统通常会把第一次通过 ARP 获取的 MAC 地址缓存起来,以便下次直接从缓存中找到对应 IP 地址的 MAC 地址。

不过,MAC 地址的缓存是有一定期限的,超过这个期限,缓存的内容将被清除。

动态主机控制协议DHCP

DHCP 在生活中是很常见的了,电脑通常都是通过 DHCP 动态获取 IP 地址,大大省去了配 IP 信息繁琐的过程。DHCP 客户端进程监听的是 68 端口号,DHCP 服务端进程监听的是 67 端口号。

  • 客户端首先发起 DHCP 发现报文(DHCP DISCOVER) 的 IP 数据报,由于客户端没有 IP 地址,也不知道 DHCP 服务器的地址,所以使用的是 UDP 广播通信,其使用的广播目的地址是 255.255.255.255(端口 67) 并且使用 0.0.0.0(端口 68) 作为源 IP 地址。DHCP 客户端将该 IP 数据报传递给链路层,链路层然后将帧广播到所有的网络中设备。
  • DHCP 服务器收到 DHCP 发现报文时,用 DHCP 提供报文(DHCP OFFER) 向客户端做出响应。该报文仍然使用 IP 广播地址 255.255.255.255,该报文信息携带服务器提供可租约的 IP 地址、子网掩码、默认网关、DNS 服务器以及 IP 地址租用期
  • 客户端收到一个或多个服务器的 DHCP 提供报文后,从中选择一个服务器,并向选中的服务器发送 DHCP 请求报文(DHCP REQUEST进行响应,回显配置的参数。
  • 最后,服务端用 DHCP ACK 报文对 DHCP 请求报文进行响应,应答所要求的参数。

一旦客户端收到 DHCP ACK 后,交互便完成了,并且客户端能够在租用期内使用 DHCP 服务器分配的 IP 地址。

如果租约的 DHCP IP 地址快期后,客户端会向服务器发送 DHCP 请求报文:

  • 服务器如果同意继续租用,则用 DHCP ACK 报文进行应答,客户端就会延长租期。
  • 服务器如果不同意继续租用,则用 DHCP NACK 报文,客户端就要停止使用租约的 IP 地址。

可以发现,DHCP 交互中,全程都是使用 UDP 广播通信。DHCP 服务器即使不在同一个链路上也可以实现统一分配和管理IP地址。使用DHCP 中继代理。有了 DHCP 中继代理以后,对不同网段的 IP 地址分配也可以由一个 DHCP 服务器统一进行管理。

  • DHCP 客户端会向 DHCP 中继代理发送 DHCP 请求包,而 DHCP 中继代理在收到这个广播包以后,再以单播的形式发给 DHCP 服务器。
  • 服务器端收到该包以后再向 DHCP 中继代理返回应答,并由 DHCP 中继代理将此包广播给 DHCP 客户端 。

网络地址转换NAT

网络地址转换 NAT用于缓解 IPv4 地址耗尽的问题。简单来说 ,NAT 就是同个公司、家庭、教室内的主机对外部通信时,把私有 IP 地址转换成公有 IP 地址。

由于绝大多数的网络应用都是使用传输层协议 TCP 或 UDP 来传输数据的。因此,可以把 IP 地址 + 端口号一起进行转换。这样,就用一个全球 IP 地址就可以了,这种转换技术就叫网络地址与端口转换 NAPT。

假设有两个客户端 192.168.1.10192.168.1.11 同时与服务器 183.232.231.172 进行通信,并且这两个客户端的本地端口都是 1025。此时,两个私有 IP 地址都转换 IP 地址为公有地址 120.229.175.121,但是以不同的端口号作为区分。

于是,生成一个 NAPT 路由器的转换表,就可以正确地转换地址跟端口的组合,令客户端 A、B 能同时与服务器之间进行通信。这种转换表在 NAT 路由器上自动生成。例如,在 TCP 的情况下,建立 TCP 连接首次握手时的 SYN 包一经发出,就会生成这个表。而后又随着收到关闭连接时发出 FIN 包的确认应答从表中被删除。

互联网控制报文协议ICMP

ICMP 全称是 Internet Control Message Protocol,也就是互联网控制报文协议

ICMP 主要的功能包括:确认 IP 包是否成功送达目标地址、报告发送过程中 IP 包被废弃的原因和改善网络设置等。IP 通信中如果某个 IP 包因为某种原因未能达到目标地址,那么这个具体的原因将由 ICMP 负责通知。ICMP 的这种通知消息会使用 IP 进行发送 。

假设主机 A 向主机 B 发送了数据包,由于某种原因,途中的路由器 2 未能发现主机 B 的存在,这时,路由器 2 就会向主机 A 发送一个 ICMP 目标不可达数据包,说明发往主机 B 的包未能成功。

ICMP 大致可以分为两大类:

  • 一类是用于诊断的查询消息,也就是「查询报文类型
  • 另一类是通知出错原因的错误消息,也就是「差错报文类型