这是我参与「第五届青训营 」伴学笔记创作活动的第 9 天
规则引擎介绍
规则引擎是一种嵌入在应用服务中的组件,可以将灵活多变的业务决策从服务代码中分离出来。通过使用预定义的语义模块来编写业务逻辑规则。在执行时接受数据输入、解释业务规则,并做出决策。规则引擎能大大提高系统的灵活性和扩展性。
在字节跳动,规则引擎已经在风控识别、活动运营、配置下发等场景得到了广泛的应用。开发人员可以将业务逻辑与服务代码解耦,实现灵活、高效的业务策略发布。目前公司内部基于规则引擎的动态决策系统已经承接了千万级别QPS的决策请求。
规则引擎的实现需要在满足大容量、高请求、低延迟的基础上尽可能做到简单易上手。本次课程将会带领大家实现一个简单版的规则引擎。
编译过程
编译的过程就是 把某种语言的源程序,在不改变语义的条件下,转换成另一种语言程序(目标语言程序)
- 如果源代码编译后要在操作系统上运行,那目标代码就是汇编/机器代码。
- 如果编译后是在虚拟机里执行,那目标代码就可以不是汇编代码,而是一种解释器可以理解的中间形式的代码即可。
词法分析
把源代码字符串转换为词法单元(Token)的这个过程。
确定的有限自动机 DFA | Deterministic Finite Automaton 确定的有限自动机就是一个状态机,它的状态数量是有限的。该状态机在任何一个状态,基于输入的字符,都能做一个确定的状态转换。
3.3 语法分析
词法分析是识别一个个的单词,而语法分析就是在词法分析的基础上识别出程序的语法结构。这个结构是一个树状结构。这棵树叫做抽象语法树(Abstract Syntax Tree,AST)。树的每个节点(子树)是一个语法单元,这个单元的构成规则就叫“语法”。每个节点还可以有下级节点。
Token -> AST
上下文无关语法 Context-Free Grammar
语言句子无需考虑上下文,就可以判断正确性 上下文无关语法G:终结符集合T + 非终结符集合N + 产生式集合P + 起始符号S
G由T、N、S和P组成,由语法G推导出来的所有句子的集合称为G语言!
终结符: 组成串的基本符号。可以理解为词法分析器产生的token集合。比如 + Id ( ) 等
非终结符: 表示token的的集合的语法变量。比如 stmt varDecl 等等
巴科斯范式
BNF是描述上下文无关理论的一种具体方法,通过BNF可以实现上下文无关文法的具体化、公式化、科学化,是实现代码解析的必要条件,BNF本质上就是树形分解,分解成一棵抽象语法树
- 每个产生式就是一个子树,在写编译器时,每个子树对应一个解析函数。
- 叶子节点叫做 终结符,非叶子节点叫做 非终结符。