分布式理论 - 现代架构基石| 青训营笔记
这是我参与「第五届青训营 」伴学笔记创作活动的第 8 天
一、本堂课重点内容:
- 分布式概述
- 系统模型
- 理论基础
- 共识协议
二、详细知识点介绍:
分布式概述
什么是分布式
分布式系统是计算机程序的集合,这些程序利用跨多个独立计算节点的计算资源来实现共同的目标。可以分为分布式计算、分布式存储、分布式数据库等。
Why-How-What
-
使用者视角:
- Why:
1.数据爆炸,对存储和计算有大规模运用的述求
2.成本低,构建在廉价服务器之上 - How:
1.分布式框架
2.成熟的分布式系统 - What:
1.理清规模,负载,一致性要求等
2.明确稳定性要求,制定技术方案
- Why:
-
学习者视角:
- Why:
1.后端开发必备技能
2.帮助理解后台服务器之间协作的机理 - How:
1.掌握分布式理论
2.了解一致性协议 - What:
1.把要点深入展开,针对难点搜索互联网资料进行学习
2.将所学知识运用于实践
- Why:
常见的分布式系统
- 分布式存储
- 分布式数据库
- 分布式计算
系统模型
故障模型
拜占庭将军问题
共识和一致性
客户端A读到x=0,当客户端C正在写入时,客户端A和B可能读到0或者1。但是当C写入完成后,A和B最终能读到一致的数据。我们称这样的一致性为Eventually
consistent(最终一致性)
当客户端A读到更新的版本x=1后,及时将消息同步给其他客户端,这样其他客户端立即能获取到x=1。我们称这样的一致性达Linearizability(线性一致性)
如果要保证“线性”——致性,多个节点间势必需要进行协商,以寻求一致。这样增
加了延迟,系统可用性便会受损
时间和事件顺序
理论基础
CAP理论
- CAP理论往往运用于数据库领域,同样可以适用于分布式存储方向
- CA:放弃分区容错性,加强一致性和可用性,其实就是传统的单机数据库的选择
- AP:放弃一致性(这里说的一致性是强一致性),追求分区容错性和可用性,例如—些注重用户体验的系统
- CP:放弃可用性,追求一致性和分区容错性,例如与钱财安全相关的系统
ACID理论
- 事务是数据库系统中非常重要的概念,它是数据库管理系统执行过程中的一个逻辑单元,它能够保证一个事务中的所有操作要么全部执行,要么全都不执行。 数据库事务拥有四个特性ACID,即分别是原子性(Atomicity)、一致性(Consistency)、隔离性(lsolation)和持久性(Durability)
- 原子性(A)。原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚。
- 一致性(C)。一致性是指事务必须使数据库从一个—致性状态变换到另一个一致性状态,也就是说一个事务执行之前和执行之后都必须处于一致性状态
- 隔离性(I)。隔离性是当多个用户并发访问数据库时,数据库为每一个用户开启的事务,不能被其他事务的操作所干扰,多个并发事务之间要相互隔离
- 持久性(D)。持久性是指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作。
BASE理论
- Base理论是对CAP中一致性和可用性权衡的结果,其来源于对大型互联网分布式实践的总结,是基于CAP定理逐步演化而来的。其核心思想是:
- Basically Available(基本可用):假设系统,出现了不可预知的故障,但还是能用,相比较正常的系统而言:响应时间上的损失,或功能上的损失
- Soft state(软状态)∶允许系统中的数据存在中间状态,并认为该状态不影响系统的整体可用性,即允许系统在多个不同节点的数据副本存在数据延时。
- Eventually consistent(最终一致性)︰系统能够保证在没有其他新的更新操作的情况下,数据最终一定能够达到一致的状态,因此所有客户端对系统的数据访问最终都能够获取到最新的值。
分布式事务
两阶段提交
- 二阶段提交(Two-phase Commit):为了使基于分布式系统架构下的所有节点在进行事务提交时保持一致性而设计的—种演算法。
- 需注意的问题:
1.性能问题
两阶段提交需要多次节点间的网络通信,耗时过大,资源需要进行锁定,徒增资源等待时同。
2.协调者单点故障问题
如果事务协调者节点宕机,需要另起新的协调者,否则参与者处于中间状态无法完成事务。
3.网络分区带来的数据不一致
一部分参与者收到了Commit消息,另一部分参与者没收到Commit消息,会导致了节点之间数据不一致。
三阶段提交
- 将两阶段提交中的Prepare阶段,拆成两部分:CanCommit和PreCommit机制
- 解决了两个问题:
- 1.单点故障问题
- 2.阻塞问题
- 另外引入超时机制,在等待超时之后,会继续进行事务的提交。
MVCC
- MVCC是一种并发控制的方法,维持一个数据的多个版本使读写操作没有冲突。所以既不会阻塞写,也不阻塞读。MVCC为每个修改保存一个版本,和事务的时间戳相关联。可以提高并发性能,解决脏读的问题。
共识协议
Quorum NWR模型
- Quorum NWR三要素
- N:在分布式存储系统中,有多少份备份数据
- W:代表一次成功的更新操作要求至少有w份数据写入成功
- R:代表一次成功的读数据操作要求至少有R份数据成功读取
- 为了保证强一致性,需要保证W+R>N
- Quorum NWR模型将CAP的选择交给用户,是一种简化版的一致性模型。
RAFT协议
- Raft协议是一种分布式一致性算法(共识算法),即使出现部分节点故障,网络延时等情况,也不影响各节点,进而提高系统的整体可用性。Raft是使用较为广泛的分布式协议。一定意义上讲,RAFT也使用了Quorum机制。
- Leader -领导者,通常一个系统中是一主(Leader)多从(Follower) 。Leader负责处理所有的客户端请求,并向Follower同步请求日志,当日志同步到大多数节点上后,通知Follower提交日志。
- Follower-跟随者,不会发送任何请求。接受并持久化Leader同步的日志,在Leader告知日志可以提交后,提交日志。当Leader出现故障时,主动推荐自己为Candidate。
- Candidate -备选者,Leader选举过程中的临时角色。向其他节点发送请求投票信息。如果获得大多数选票,则晋升为Leader。
Paxos协议
- Paxos算法与RAFT算法区别:
1.Multi-Paxos 可以并发修改日志,而Raft写日志操作必须是连续的
2.Multi-Paxos可以随机选主,不必最新最全的节点当选Leader
Paxos优势:写入并发性能高,所有节点都能写入
Paxos劣势:没有一个节点有完整的最新的数据,恢复流程复杂,需要同步历史记录
分布式实践
MapReduce
- Mapper:将输入分解为多个Job来并行处理。彼此间几乎没有依赖关系
- Shuffler:将maper结果打乱,防止数据倾斜
- Reducer:对map阶段的结果进行全局汇总
分布式KV
- 架构:将海量结构化数据根据Key分成不同的Region,每个Region构建一个单机KV数据库,Region之间形成Raft Groups,做到强一致
容错:当Node故障时,通过Raft Learner模式进行数据修复
弹性:当出现局部Key热点或数据膨胀时,Region可以进行Split操作,分成两个子Region,反之收缩时进行Merge操作
三、课后总结:
- 碍于时间篇幅,本篇笔记还待后续完善