垃圾回收
JVM的内存管理是交由垃圾回收器来自动处理的,而不是手动来操作的,因此肯定没有手动回收那么精准.
将已经分配出去的,但却不再使用的内存回收回来,以便能够再次分配。
什么是垃圾
在 Java 虚拟机的语境下,垃圾指的是死亡的对象所占据的堆空间。
但是如何去定义什么是对象死亡呢?
引用计数法(reference counting)
为每个对象添加一个引用计数器,用来统计指向该对象的引用个数。一旦某个对象的引用计数器为 0,则说明该对象已经死亡,便可以被回收了。
如果有一个引用,被赋值为某一对象,那么将该对象的引用计数器 +1。如果一个指向某一对象的引用,被赋值为其他值,那么将该对象的引用计数器 -1。也就是说,我们需要截获所有的引用更新操作,并且相应地增减目标对象的引用计数器
引用计数法的问题:
- 需要额外的空间来存储计数器
- 更新操作繁琐
- 无法处理循环引用对象
假设对象 a 与 b 相互引用,除此之外没有其他引用指向 a 或者 b。在这种情况下,a 和 b 实际上已经死了,但由于它们的引用计数器皆不为 0,在引用计数法的心中,这两个对象还活着。因此,这些循环引用对象所占据的空间将不可回收,从而造成了内存泄露。
可达性分析算法
算法的实质在于将一系列 GC Roots 作为初始的存活对象合集(live set),然后从该合集出发,探索所有能够被该集合引用到的对象,并将其加入到该集合中,这个过程我们也称之为标记(mark)。最终,未被探索到的对象便是死亡的,是可以回收的。
可达性分析可以解决引用计数法所不能解决的循环引用问题。 即便对象 a 和 b 相互引用,只要从 GC Roots 出发无法到达 a 或者 b,那么可达性分析便不会将它们加入存活对象合集之中。
GC Roots
GC Roots 包括(但不限于)如下几种:
- Java 方法栈桢中的局部变量;
- 已加载类的静态变量;
- JNI handles;
- 已启动且未停止的 Java 线程。
在多线程环境下,其他线程可能会更新已经访问过的对象中的引用,从而造成误报(将引用设置为 null)或者漏报(将引用设置为未被访问过的对象)
Stop-the-world与安全点(safepoint)
传统的垃圾回收算法采用的是一种简单粗暴的方式,即 Stop-the-world,停止其他非垃圾回收线程的工作,直到完成垃圾回收。这也就造成了垃圾回收所谓的暂停时间(GC pause)。
Java 虚拟机中的 Stop-the-world 是通过安全点(safepoint)机制来实现的。当 Java 虚拟机收到 Stop-the-world 请求,它便会等待所有的线程都到达安全点,才允许请求 Stop-the-world 的线程进行独占的工作。
一旦垃圾回收线程喊出了安全词,其他非垃圾回收线程便会一一停下。
当然,安全点的初始目的并不是让其他线程停下,而是找到一个稳定的执行状态。在这个执行状态下,Java 虚拟机的堆栈不会发生变化。这么一来,垃圾回收器便能够“安全”地执行可达性分析。
举个例子,当 Java 程序通过 JNI 执行本地代码时,如果这段代码不访问 Java 对象、调用 Java 方法或者返回至原 Java 方法,那么 Java 虚拟机的堆栈不会发生改变,也就代表着这段本地代码可以作为同一个安全点。
垃圾回收的方法
回收死亡对象的内存共有三种方式,分别为:会造成内存碎片的清除、性能开销较大的压缩、以及堆使用效率较低的复制。
现代的垃圾回收器往往会综合上述几种回收方式,综合它们优点的同时规避它们的缺点。
清除 sweep
把死亡对象所占据的内存标记为空闲内存,并记录在一个空闲列表(free list)之中。当需要新建对象时,内存管理模块便会从该空闲列表中寻找空闲内存,并划分给新建的对象。
清除这种回收方式的原理及其简单,但是有两个缺点。一是会造成内存碎片。由于 Java 虚拟机的堆中对象必须是连续分布的,因此可能出现总空闲内存足够,但是无法分配的极端情况。
另一个则是分配效率较低。如果是一块连续的内存空间,那么我们可以通过指针加法(pointer bumping)来做分配。而对于空闲列表,Java 虚拟机则需要逐个访问列表中的项,来查找能够放入新建对象的空闲内存。
压缩 compress
即把存活的对象聚集到内存区域的起始位置,从而留下一段连续的内存空间。这种做法能够解决内存碎片化的问题,但代价是压缩算法的性能开销。
复制copy
即把内存区域分为两等分,分别用两个指针 from 和 to 来维护,并且只是用 from 指针指向的内存区域来分配内存。当发生垃圾回收时,便把存活的对象复制到 to 指针指向的内存区域中,并且交换 from 指针和 to 指针的内容。复制这种回收方式同样能够解决内存碎片化的问题,但是它的缺点也极其明显,即堆空间的使用效率极其低下。
JVM的分代回收
大佬们经过实验发现,大部分的 Java 对象只存活一小段时间,而存活下来的小部分 Java 对象则会存活很长一段时间。
JVM的分代回收思想,就是将堆空间划分为两代,分别叫做新生代和老年代。新生代用来存储新建的对象。当对象存活时间够长时,则将其移动到老年代。
Java 虚拟机可以给不同代使用不同的回收算法。对于新生代,我们猜测大部分的 Java 对象只存活一小段时间,那么便可以频繁地采用耗时较短的垃圾回收算法,让大部分的垃圾都能够在新生代被回收掉。 对于老年代,我们猜测大部分的垃圾已经在新生代中被回收了,而在老年代中的对象有大概率会继续存活。当真正触发针对老年代的回收时,则代表这个假设出错了,或者堆的空间已经耗尽了。
JVM的堆划分
分代中的新生代被划分为 Eden 区,以及两个大小相同的 Survivor 区,相对地作为为From 和 To 逻辑区域, 当Servivor1作为 From 时 , Servivor2 就作为 To, 反之亦然。
默认情况下,Java 虚拟机采取的是一种动态分配的策略(对应 Java 虚拟机参数 -XX:+UsePSAdaptiveSurvivorSizePolicy),根据生成对象的速率,以及 Survivor 区的使用情况动态调整 Eden 区和 Survivor 区的比例。
也可以通过参数 -XX:SurvivorRatio 来固定这个比例。但是需要注意的是,其中一个 Survivor 区会一直为空,因此比例越低堆空间将越浪费。
当调用 new 指令时,它会在 Eden 区中划出一块作为存储对象的内存。由于堆空间是线程共享的,因此直接在这里边划空间是需要进行同步的,不然不同对象占用相同内存空间就会发生了。
TLAB 线程本地分配缓存
TLAB(Thread Local Allocation Buffer,对应虚拟机参数 -XX:+UseTLAB,默认开启)。
在内存不够用的时候,每个线程可以向 Java 虚拟机申请一段连续的内存,比如 2048 字节,作为线程私有的 TLAB。这个操作需要加锁,线程需要维护两个指针(实际上可能更多,但重要也就两个),一个指向 TLAB 中空余内存的起始位置,一个则指向 TLAB 末尾。
接下来的 new 指令,便可以直接通过指针加法(bump the pointer)来实现,即把指向空余内存位置的指针加上所请求的字节数。
如果加法后空余内存指针的值仍小于或等于指向末尾的指针,则代表分配成功。否则,TLAB 已经没有足够的空间来满足本次新建操作。这个时候,便需要当前线程重新申请新的 TLAB。
Minor GC
当 Eden 区的空间耗尽了时 Java 虚拟机便会触发一次 Minor GC,来收集新生代的垃圾。存活下来的对象,则会被送到 Survivor 区。
当发生 Minor GC 时,Eden 区和 from 指向的 Survivor 区中的存活对象会被复制到 to 指向的 Survivor 区中,然后交换 from 和 to 指针,以保证下一次 Minor GC 时,to 指向的 Survivor 区还是空的。
什么时候晋升老年代
Java 虚拟机会记录 Survivor 区中的对象一共被来回复制了几次。
如果一个对象被复制的次数为 15(对应虚拟机参数 -XX:+MaxTenuringThreshold),那么该对象将被晋升(promote)至老年代。
另外,如果单个 Survivor 区已经被占用了 50%(对应虚拟机参数 -XX:TargetSurvivorRatio),那么较高复制次数的对象也会被晋升至老年代。
发生 Minor GC 时,应用了标记 - 复制算法,将 Survivor 区中的老存活对象晋升到老年代,然后将剩下的存活对象和 Eden 区的存活对象复制到另一个 Survivor 区中。理想情况下,Eden 区中的对象基本都死亡了,那么需要复制的数据将非常少,因此采用这种标记 - 复制算法的效果极好。
Minor GC 的另外一个好处是不用对整个堆进行垃圾回收。但是,它却有一个问题,那就是老年代的对象可能引用新生代的对象。也就是说,在标记存活对象的时候,我们需要扫描老年代中的对象。如果该对象拥有对新生代对象的引用,那么这个引用也会被作为 GC Roots。
卡表 Card Table
Minor GC 只针对新生代进行垃圾回收,所以在枚举 GC Roots 的时候,它需要考虑从老年代到新生代的引用。为了避免扫描整个老年代,Java 虚拟机引入了名为卡表的技术,大致地标出可能存在老年代到新生代引用的内存区域。
技术将整个堆划分为一个个大小为 512 字节的卡,并且维护一个卡表,用来存储每张卡的一个标识位。这个标识位代表对应的卡是否可能存有指向新生代对象的引用。如果可能存在,那么我们就认为这张卡是脏的。
在进行 Minor GC 的时候,我们便可以不用扫描整个老年代,而是在卡表中寻找脏卡,并将脏卡中的对象加入到 Minor GC 的 GC Roots 里。当完成所有脏卡的扫描之后,Java 虚拟机便会将所有脏卡的标识位清零。
在 HotSpot 中,卡表是通过 byte 数组来实现的。对于一个 64 字节的缓存行来说,如果用它来加载部分卡表,那么它将对应 64 张卡,也就是 32KB 的内存。如果同时有两个 Java 线程,在这 32KB 内存中进行引用更新操作,那么也将造成存储卡表的同一部分的缓存行的写回、无效化或者同步操作,因而间接影响程序性能。为此,HotSpot 引入了一个新的参数 -XX:+UseCondCardMark,来尽量减少写卡表的操作。