Go基础知识(一)
这是我参与「第五届青训营 」伴学笔记创作活动的第 3 天,本文整理了一下Go的部分基础知识的要点,以供回顾,内容来自Go语言圣经和部分博客。
命名
Go语言中类似if和switch的关键字有25个:
break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var
var :用于变量的声明
const :用于常量的声明
type :用于声明类型
func :用于声明函数和方法
package :用于声明包文件
import :用于导入其它package
return :用于从函数返回
defer :延迟调用,在函数退出之前执行
go :创建一个协程
select :用于选择不同类型的通讯
interface :用于定义接口
struct :用于定义数据类型
break、case、continue、for、fallthrough、else、if、switch、goto、default :用于流程控制
chan :用于声明chan类型数据
map :用于声明map类型数据
range :用于遍历array、slice、map、channel数据
此外,还有大约30多个预定义的名字,比如int和true等,主要对应内建的常量、类型和函数。
内建常量: true false iota nil
内建类型: int int8 int16 int32 int64
uint uint8 uint16 uint32 uint64 uintptr
float32 float64 complex128 complex64
bool byte rune string error
内建函数: make len cap new append copy close delete
complex real imag
panic recover
名字的开头字母的大小写决定了名字在包外的可见性。如果一个名字是大写字母开头的(译注:必须是在函数外部定义的包级名字;包级函数名本身也是包级名字),那么它将是导出的,也就是说可以被外部的包访问,例如fmt包的Printf函数就是导出的,可以在fmt包外部访问。包本身的名字一般总是用小写字母。
声明
Go语言主要有四种类型的声明语句:var、const、type和func,分别对应变量、常量、类型和函数实体对象的声明。
var声明语句可以创建一个特定类型的变量,然后给变量附加一个名字,并且设置变量的初始值。也可以在一个声明语句中同时声明一组变量,或用一组初始化表达式声明并初始化一组变量。如果省略每个变量的类型,将可以声明多个类型不同的变量(类型由初始化表达式推导),变量声明的一般语法如下:
//var 变量名字 类型 = 表达式
var i, j, k int // int, int, int
//var 变量名1, 变量名2, 变量名3 变量类型
var b, f, s = true, 2.3, "four" // bool, float64, string
其中“类型”或“= 表达式”两个部分可以省略其中的一个。
-
如果省略的是类型信息,那么将根据初始化表达式来推导变量的类型信息。
-
如果初始化表达式被省略,那么将用零值初始化该变量。
- 数值类型变量对应的零值是0
- 布尔类型变量对应的零值是false
- 字符串类型对应的零值是空字符串
- 接口或引用类型(包括slice、指针、map、chan和函数)变量对应的零值是nil。
- 数组或结构体等聚合类型对应的零值是每个元素或字段都是对应该类型的零值。
var i, j, k int // int, int, int
var b, f, s = true, 2.3, "four" // bool, float64, string
初始化表达式可以是字面量或任意的表达式。在包级别声明的变量会在main入口函数执行前完成初始化(§2.6.2),局部变量将在声明语句被执行到的时候完成初始化。
一组变量也可以通过调用一个函数,由函数返回的多个返回值初始化:
var f, err = os.Open(name) // os.Open returns a file and an error
简短变量声明
在函数内部,有一种称为简短变量声明语句的形式可用于声明和初始化局部变量。它以“名字 := 表达式”形式声明变量,变量的类型根据表达式来自动推导。简短变量声明被广泛用于大部分的局部变量的声明和初始化。var形式的声明语句往往是用于需要显式指定变量类型的地方,或者因为变量稍后会被重新赋值而初始值无关紧要的地方。
i := 100 // an int
var boiling float64 = 100 // a float64
var names []string
var err error
var p Point
和var形式声明语句一样,简短变量声明语句也可以用来声明和初始化一组变量:
i, j := 0, 1
请记住“:=”是一个变量声明语句,而“=”是一个变量赋值操作。也不要混淆多个变量的声明和元组的多重赋值(§2.4.1),后者是将右边各个表达式的值赋值给左边对应位置的各个变量:
i, j = j, i // 交换 i 和 j 的值
和普通var形式的变量声明语句一样,简短变量声明语句也可以用函数的返回值来声明和初始化变量,像下面的os.Open函数调用将返回两个值:
f, err := os.Open(name)
if err != nil {
return err
}
// ...use f...
f.Close()
这里有一个比较微妙的地方:简短变量声明左边的变量可能并不是全部都是刚刚声明的。如果有一些已经在相同的词法域声明过了(§2.7),那么简短变量声明语句对这些已经声明过的变量就只有赋值行为了。
在下面的代码中,第一个语句声明了in和err两个变量。在第二个语句只声明了out一个变量,然后对已经声明的err进行了赋值操作。
in, err := os.Open(infile)
// ...
out, err := os.Create(outfile)
简短变量声明语句中必须至少要声明一个新的变量,下面的代码将不能编译通过:
f, err := os.Open(infile)
// ...
f, err := os.Create(outfile) // compile error: no new variables
解决的方法是第二个简短变量声明语句改用普通的多重赋值语句。
简短变量声明语句只有对已经在同级词法域声明过的变量才和赋值操作语句等价,如果变量是在外部词法域声明的,那么简短变量声明语句将会在当前词法域重新声明一个新的变量。我们在本章后面将会看到类似的例子。
指针
如果用“var x int”声明语句声明一个x变量,那么&x表达式(取x变量的内存地址)将产生一个指向该整数变量的指针,指针对应的数据类型是*int,指针被称之为“指向int类型的指针”。如果指针名字为p,那么可以说“p指针指向变量x”,或者说“p指针保存了x变量的内存地址”。同时*p表达式对应p指针指向的变量的值。一般*p表达式读取指针指向的变量的值,这里为int类型的值,同时因为*p对应一个变量,所以该表达式也可以出现在赋值语句的左边,表示更新指针所指向的变量的值。
x := 1
p := &x // p, of type *int, points to x
fmt.Println(*p) // "1"
*p = 2 // equivalent to x = 2
fmt.Println(x) // "2"
对于聚合类型每个成员——比如结构体的每个字段、或者是数组的每个元素——也都是对应一个变量,因此可以被取地址。
即使变量由表达式临时生成,那么表达式也必须能接受&取地址操作。
任何类型的指针的零值都是nil。如果p指向某个有效变量,那么p != nil测试为真。指针之间也是可以进行相等测试的,只有当它们指向同一个变量或全部是nil时才相等。
在Go语言中,返回函数中局部变量的地址也是安全的。例如下面的代码,调用f函数时创建局部变量v,在局部变量地址被返回之后依然有效,因为指针p依然引用这个变量。
var p = f()
func f() *int {
v := 1
return &v
}
每次调用f函数都将返回不同的结果:
fmt.Println(f() == f()) // "false"
因为指针包含了一个变量的地址,因此如果将指针作为参数调用函数,那将可以在函数中通过该指针来更新变量的值。
new函数
另一个创建变量的方法是调用内建的new函数。表达式new(T)将创建一个T类型的匿名变量,初始化为T类型的零值,然后返回变量地址,返回的指针类型为*T。
p := new(int) // p, *int 类型, 指向匿名的 int 变量
fmt.Println(*p) // "0"
*p = 2 // 设置 int 匿名变量的值为 2
fmt.Println(*p) // "2"
每次调用new函数都是返回一个新的变量的地址,当然也可能有特殊情况:如果两个类型都是空的,也就是说类型的大小是0,例如struct{}和[0]int,有可能有相同的地址(依赖具体的语言实现)(译注:请谨慎使用大小为0的类型,因为如果类型的大小为0的话,可能导致Go语言的自动垃圾回收器有不同的行为,具体请查看runtime.SetFinalizer函数相关文档)。
变量的生命周期
对于在包一级声明的变量来说,它们的生命周期和整个程序的运行周期是一致的。而相比之下,局部变量的生命周期则是动态的:每次从创建一个新变量的声明语句开始,直到该变量不再被引用为止,然后变量的存储空间可能被回收。函数的参数变量和返回值变量都是局部变量。它们在函数每次被调用的时候创建。
那么Go语言的自动垃圾收集器是如何知道一个变量是何时可以被回收的呢?基本的实现思路是,从每个包级的变量和每个当前运行函数的每一个局部变量开始,通过指针或引用的访问路径遍历,是否可以找到该变量。如果不存在这样的访问路径,那么说明该变量是不可达的,也就是说它是否存在并不会影响程序后续的计算结果。
因为一个变量的有效周期只取决于是否可达,因此一个循环迭代内部的局部变量的生命周期可能超出其局部作用域。同时,局部变量可能在函数返回之后依然存在。
编译器会自动选择在栈上还是在堆上分配局部变量的存储空间,但可能令人惊讶的是,这个选择并不是由用var还是new声明变量的方式决定的。
var global *int
func f() {
var x int
x = 1
global = &x
}
func g() {
y := new(int)
*y = 1
}
f函数里的x变量必须在堆上分配,因为它在函数退出后依然可以通过包一级的global变量找到,虽然它是在函数内部定义的;用Go语言的术语说,这个x局部变量从函数f中逃逸了。相反,当g函数返回时,变量*y将是不可达的,也就是说可以马上被回收的。因此,*y并没有从函数g中逃逸,编译器可以选择在栈上分配*y的存储空间(译注:也可以选择在堆上分配,然后由Go语言的GC回收这个变量的内存空间),虽然这里用的是new方式。其实在任何时候,你并不需为了编写正确的代码而要考虑变量的逃逸行为,要记住的是,逃逸的变量需要额外分配内存,同时对性能的优化可能会产生细微的影响。
Go语言的自动垃圾收集器对编写正确的代码是一个巨大的帮助,但也并不是说你完全不用考虑内存了。你虽然不需要显式地分配和释放内存,但是要编写高效的程序你依然需要了解变量的生命周期。例如,如果将指向短生命周期对象的指针保存到具有长生命周期的对象中,特别是保存到全局变量时,会阻止对短生命周期对象的垃圾回收(从而可能影响程序的性能)。