不要自卑,去提升实力
互联网行业谁技术牛谁是爹
如果文章可以带给你能量,那是最好的事!请相信自己
加油o~
设计思路:
char* pre为前序遍历的顺序
char* in为中序遍历的顺序
首先建立一个指针p,用循环在in中找到根节点
left为左子树个数=p-in(指针差值)
right为右子树个数(n-left-1)
之后递归调用该函数构建左右子树
代码:
/**
*作者:魏宝航
*2020年11月27日,下午15:50
*/
#include<iostream>
using namespace std;
class Node {
public:
char ch;
Node* left;
Node* right;
Node() {
ch = '\0';
left = NULL;
right = NULL;
}
Node(char ch, Node* left, Node* right) {
this->ch = ch;
this->left = left;
this->right = right;
}
};
//二叉树的前序遍历
void preOrder(Node* root) {
if (root == NULL) {
return;
}
cout << root->ch << " ";
preOrder(root->left);
preOrder(root->right);
}
//二叉树的中序遍历
void midOrder(Node* root) {
if (root == NULL) {
return;
}
midOrder(root->left);
cout << root->ch << " ";
midOrder(root->right);
}
//二叉树的后序遍历
void postOrder(Node* root) {
if (root == NULL) {
return;
}
postOrder(root->left);
postOrder(root->right);
cout << root->ch << " ";
}
//由前序遍历和中序遍历构建二叉树
Node* buildTree(char* pre, char* in, int n) {
if (n == 0) {
return NULL;
}
Node* root = new Node();
root->ch = *pre;
char* p;
//在中序中找到根节点
for (p = in; p < in + n; p++) {
if (*p == *pre) {
break;
}
}
int left = p - in;//左子树个数
int right = n - left - 1;//右子树个数
//递归构建左子树
root->left = buildTree1(pre + 1, in, left);
//递归构建右子树
root->right = buildTree1(pre + left + 1, p + 1, right);
return root;
}
int main() {
char a[] = { 'A','B','D','E','C','F' };
char b[] = { 'D','B','E','A','C','F' };
Node* root = new Node();
root = buildTree(a, b, 6);
preOrder(root);
midOrder(root);
}