分布式系统可观测性之应用业务指标监控

201 阅读2分钟

2017 年的分布式追踪峰会(2017 Distributed Tracing Summit)结束后,Peter Bourgon 撰写了总结文章《Metrics, Tracing, and Logging》系统地阐述了这三者的定义、特征,以及它们之间的关系与差异。 文中将可观测性问题映射到了如何处理指标(metrics)、追踪(tracing)、日志(logging)三类数据上。

其后,Cindy Sridharan 在其著作《Distributed Systems Observability》中,进一步讲到指标、追踪、日志是可观测性的三大支柱(three pillars)。

指标、追踪、日志之间的关系与差异

到了 2018 年, CNCF Landscape 率先出现了 Observability 的概念,将可观测性( Observability )从控制论( Cybernetics )中引入到 IT 领域。在控制论中,可观测性是指系统可以由其外部输出,来推断其内部状态的程度,系统的可观察性越强,我们对系统的可控制性就越强。

可观测性可以解决什么问题?Google SRE Book 第十二章给出了简洁明快的答案:快速排障

而在云原生时代,分布式系统越来越复杂,分布式系统的变更是非常频繁的,每次变更都可能导致新类型的故障。应用上线之后,如果缺少有效的监控,很可能导致遇到问题我们自己都不知道,需要依靠用户反馈才知道应用出了问题。

本文主要讲述如何建立应用业务指标 Metrics 监控和如何实现精准告警。Metrics 可以翻译为度量或者指标,指的是对于一些关键信息以可聚合的、数值的形式做定期统计,并绘制出各种趋势图表。透过它,我们可以观察系统的状态与趋势。

技术栈选择

我们的应用都是 Spring Boot 应用,并且使用 Spring Boot Actuator 实现应用的健康检查。从 Spring Boot 2.0 开始,Actuator 将底层改为 Micrometer,提供了更强、更灵活的监测能力。Micrometer 支持对接各种监控系统,包括 Prometheus。

所以我们选择 Micrometer 收集业务指标,Prometheus 进行指标的存储和查询,通过 Grafana 进行展示,通过阿里云的告警中心实现精准告警。

Prometheus Architecture

Prometheus OVERVIEW

Prometheus Architecture

Solution Architecture

参考