并发编程-Semaphore

175 阅读3分钟

开启掘金成长之旅!这是我参与「掘金日新计划 · 12 月更文挑战」的第40天,点击查看活动详情

基本使用

[ˈsɛməˌfɔr] 信号量,用来限制能同时访问共享资源的线程上限。

public static void main(String[] args) {
    // 1. 创建 semaphore 对象
    Semaphore semaphore = new Semaphore(3);
    // 2. 10个线程同时运行
    for (int i = 0; i < 10; i++) {
        new Thread(() -> {
            // 3. 获取许可
            try {
                semaphore.acquire();
            //对于非打断式获取,如果此过程中被打断,线程依旧会等到获取了信号量之后才进入catch块。
            //catch块中的线程依旧持有信号量,捕获该异常后catch块可以不做任何处理。
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            try {
                log.debug("running...");
                sleep(1);
                log.debug("end...");
            } finally {
                // 4. 释放许可
                semaphore.release();
            }
        }).start();
    }
}

输出

07:35:15.485 c.TestSemaphore [Thread-2] - running... 
07:35:15.485 c.TestSemaphore [Thread-1] - running... 
07:35:15.485 c.TestSemaphore [Thread-0] - running... 
07:35:16.490 c.TestSemaphore [Thread-2] - end... 
07:35:16.490 c.TestSemaphore [Thread-0] - end... 
07:35:16.490 c.TestSemaphore [Thread-1] - end... 
07:35:16.490 c.TestSemaphore [Thread-3] - running... 
07:35:16.490 c.TestSemaphore [Thread-5] - running... 
07:35:16.490 c.TestSemaphore [Thread-4] - running... 
07:35:17.490 c.TestSemaphore [Thread-5] - end... 
07:35:17.490 c.TestSemaphore [Thread-4] - end... 
07:35:17.490 c.TestSemaphore [Thread-3] - end... 
07:35:17.490 c.TestSemaphore [Thread-6] - running... 
07:35:17.490 c.TestSemaphore [Thread-7] - running... 
07:35:17.490 c.TestSemaphore [Thread-9] - running... 
07:35:18.491 c.TestSemaphore [Thread-6] - end... 
07:35:18.491 c.TestSemaphore [Thread-7] - end... 
07:35:18.491 c.TestSemaphore [Thread-9] - end... 
07:35:18.491 c.TestSemaphore [Thread-8] - running... 
07:35:19.492 c.TestSemaphore [Thread-8] - end... 

说明:

  • Semaphore有两个构造器:Semaphore(int permits)Semaphore(int permits,boolean fair)

  • permits表示允许同时访问共享资源的线程数。

  • fair表示公平与否,与之前的ReentrantLock一样。

Semaphore应用

semaphore 限制对共享资源的使用

  • 使用 Semaphore 限流,在访问高峰期时,让请求线程阻塞,高峰期过去再释放许可,当然它只适合限制单机 线程数量,并且仅是限制线程数,而不是限制资源数(例如连接数,请对比 Tomcat LimitLatch 的实现)
  • 用 Semaphore 实现简单连接池,对比『享元模式』下的实现(用wait notify),性能和可读性显然更好, 注意下面的实现中线程数和数据库连接数是相等的
@Slf4j(topic = "c.Pool")
class Pool {
    // 1. 连接池大小
    private final int poolSize;
    // 2. 连接对象数组
    private Connection[] connections;
    // 3. 连接状态数组 0 表示空闲, 1 表示繁忙
    private AtomicIntegerArray states;
    private Semaphore semaphore;
    // 4. 构造方法初始化
    public Pool(int poolSize) {
        this.poolSize = poolSize;
        // 让许可数与资源数一致
        this.semaphore = new Semaphore(poolSize);
        this.connections = new Connection[poolSize];
        this.states = new AtomicIntegerArray(new int[poolSize]);
        for (int i = 0; i < poolSize; i++) {
            connections[i] = new MockConnection("连接" + (i+1));
        }
    }
    // 5. 借连接
    public Connection borrow() {// t1, t2, t3
        // 获取许可
        try {
            semaphore.acquire(); // 没有许可的线程,在此等待
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        for (int i = 0; i < poolSize; i++) {
            // 获取空闲连接
            if(states.get(i) == 0) {
                if (states.compareAndSet(i, 0, 1)) {
                    log.debug("borrow {}", connections[i]);
                    return connections[i];
                }
            }
        }
        // 不会执行到这里
        return null;
    }
    // 6. 归还连接
    public void free(Connection conn) {
        for (int i = 0; i < poolSize; i++) {
            if (connections[i] == conn) {
                states.set(i, 0);
                log.debug("free {}", conn);
                semaphore.release();
                break;
            }
        }
    }
}

Semaphore原理

加锁解锁流程

Semaphore有点像一个停车场,permits就好像停车位数量,当线程获得了permits就像是获得了停车位,然后停车场显示空余车位减一。

刚开始,permits(state)为 3,这时 5 个线程来获取资源

假设其中 Thread-1,Thread-2,Thread-4 cas 竞争成功,而 Thread-0 和 Thread-3 竞争失败,进入 AQS 队列 park 阻塞

这时 Thread-4 释放了 permits,状态如下

接下来 Thread-0 竞争成功,permits 再次设置为 0,设置自己为 head 节点,断开原来的 head 节点,unpark 接 下来的 Thread-3 节点,但由于 permits 是 0,因此 Thread-3 在尝试不成功后再次进入 park 状态

源码分析

static final class NonfairSync extends Sync {
    private static final long serialVersionUID = -2694183684443567898L;
    NonfairSync(int permits) {
        // permits 即 state
        super(permits);
    }

    // Semaphore 方法, 方便阅读, 放在此处
    public void acquire() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }
    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquireSharedInterruptibly(int arg)
        throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

    // 尝试获得共享锁
    protected int tryAcquireShared(int acquires) {
        return nonfairTryAcquireShared(acquires);
    }

    // Sync 继承过来的方法, 方便阅读, 放在此处
    final int nonfairTryAcquireShared(int acquires) {
        for (;;) {
            int available = getState();
            int remaining = available - acquires; 
            if (
                // 如果许可已经用完, 返回负数, 表示获取失败, 进入 doAcquireSharedInterruptibly
                remaining < 0 ||
                // 如果 cas 重试成功, 返回正数, 表示获取成功
                compareAndSetState(available, remaining)
            ) {
                return remaining;
            }
        }
    }

    // AQS 继承过来的方法, 方便阅读, 放在此处
    private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    // 再次尝试获取许可
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        // 成功后本线程出队(AQS), 所在 Node设置为 head
                        // 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
                        // 如果 head.waitStatus == 0 ==> Node.PROPAGATE 
                        // r 表示可用资源数, 为 0 则不会继续传播
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                // 不成功, 设置上一个节点 waitStatus = Node.SIGNAL, 下轮进入 park 阻塞
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    // Semaphore 方法, 方便阅读, 放在此处
    public void release() {
        sync.releaseShared(1);
    }

    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryReleaseShared(int releases) {
        for (;;) {
            int current = getState();
            int next = current + releases;
            if (next < current) // overflow
                throw new Error("Maximum permit count exceeded");
            if (compareAndSetState(current, next))
                return true;
        }
    }
}
private void setHeadAndPropagate(Node node, int propagate) {
    Node h = head; // Record old head for check below
    // 设置自己为 head
    setHead(node);
    // propagate 表示有共享资源(例如共享读锁或信号量)
    // 原 head waitStatus == Node.SIGNAL 或 Node.PROPAGATE
    // 现在 head waitStatus == Node.SIGNAL 或 Node.PROPAGATE
    if (propagate > 0 || h == null || h.waitStatus < 0 ||
        (h = head) == null || h.waitStatus < 0) {
        Node s = node.next;
        // 如果是最后一个节点或者是等待共享读锁的节点
        if (s == null || s.isShared()) {
            doReleaseShared();
        }
    }
}
private void doReleaseShared() {
    for (;;) {
        Node h = head;
        if (h != null && h != tail) {
            int ws = h.waitStatus;
            if (ws == Node.SIGNAL) {
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;            // loop to recheck cases
                unparkSuccessor(h);
            }
            else if (ws == 0 &&
                     !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;                // loop on failed CAS
        }
        if (h == head)                   // loop if head changed
            break;
    }
}

加锁流程总结:

  • acquire->acquireSharedInterruptibly(1)->tryAcquireShared(1)->nonfairTryAcquireShared(1),如果资源用完了,返回负数,tryAcquireShared返回负数,表示失败。否则返回正数,tryAcquireShared返回正数,表示成功。

    • 如果成功,获取信号量成功。

    • 如果失败,调用doAcquireSharedInterruptibly,进入for循环:

      • 如果当前驱节点为头节点,调用tryAcquireShared尝试获取锁

        • 如果结果大于等于0,表明获取锁成功,调用setHeadAndPropagate,将当前节点设为头节点,之后又调用doReleaseShared,唤醒后继节点。
      • 调用shoudParkAfterFailure,第一次调用返回false,并将前驱节点改为-1,第二次循环如果再进入此方法,会进入阻塞并检查打断的方法。

解锁流程总结:

  • release->sync.releaseShared(1)->tryReleaseShared(1),只要不发生整数溢出,就返回true
    • 如果返回true,调用doReleaseShared,唤醒后继节点。

    • 如果返回false,解锁失败。