开启掘金成长之旅!这是我参与「掘金日新计划 · 12 月更文挑战」的第18天,点击查看活动详情
DataFrame 是什么
在 Spark 中,DataFrame 是一种以 RDD 为基础的分布式数据集,类似于传统数据库中的二
维表格。DataFrame 与 RDD 的主要区别在于,前者带有 schema 元信息,即 DataFrame
所表示的二维表数据集的每一列都带有名称和类型。这使得 Spark SQL 得以洞察更多的结构
信息,从而对藏于 DataFrame 背后的数据源以及作用于 DataFrame 之上的变换进行了针对
性的优化,最终达到大幅提升运行时效率的目标。反观 RDD,由于无从得知所存数据元素的具
体内部结构,Spark Core 只能在 stage 层面进行简单、通用的流水线优化。
同时,与 Hive 类似,DataFrame 也支持嵌套数据类型(struct、array 和 map)。从
API 易用性的角度上看,DataFrame API 提供的是一套高层的关系操作,比函数式的 RDD
API 要 更加友好,门槛更低。
左侧的 RDD[Person]虽然以 Person 为类型参数,但 Spark 框架本身不了解 Person 类的内部结构。而右侧的 DataFrame 却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道 该数据集中包含哪些列,每列的名称和类型各是什么。 DataFrame 是为数据提供了 Schema 的视图。可以把它当做数据库中的一张表来对待 DataFrame 也是懒执行的,但性能上比 RDD 要高,主要原因:优化的执行计划,即查询计 划通过 Spark catalyst optimiser 进行优化。
DataSet 是什么
DataSet 是分布式数据集合。DataSet 是 Spark 1.6 中添加的一个新抽象,是 DataFrame 的一个扩展。它提供了 RDD 的优势(强类型,使用强大的 lambda 函数的能力)以及 Spark SQL 优化执行引擎的优点。DataSet 也可以使用功能性的转换(操作 map,flatMap,filter 等等)
➢ DataSet 是 DataFrame API 的一个扩展,是 SparkSQL 最新的数据抽象
➢ 用户友好的 API 风格,既具有类型安全检查也具有 DataFrame 的查询优化特性;
➢ 用样例类来对 DataSet 中定义数据的结构信息,样例类中每个属性的名称直接映射到 DataSet 中的字段名称;
➢ DataSet 是强类型的。比如可以有 DataSet[Car],DataSet[Person]。
➢ DataFrame 是 DataSet 的特列,DataFrame=DataSet[Row] ,所以可以通过 as 方法将 DataFrame 转换为 DataSet。Row 是一个类型,跟 Car、Person 这些的类型一样,所有的表结构信息都用 Row 来表示。获取数据时需要指定顺序