开启掘金成长之旅!这是我参与「掘金日新计划 · 12 月更文挑战」的第31天,点击查看活动详情
线程池
自定义线程池
步骤1:自定义拒绝策略接口
@FunctionalInterface //拒绝策略
interface RejectPolicy<T>{
void reject(BlockingQueue<T> queue,T task);
}
步骤2:自定义任务队列
class BlockingQueue<T>{
//阻塞队列,存放任务
private Deque<T> queue = new ArrayDeque<>();
//队列的最大容量
private int capacity;
//锁
private ReentrantLock lock = new ReentrantLock();
//生产者条件变量
private Condition fullWaitSet = lock.newCondition();
//消费者条件变量
private Condition emptyWaitSet = lock.newCondition();
//构造方法
public BlockingQueue(int capacity) {
this.capacity = capacity;
}
//超时阻塞获取
public T poll(long timeout, TimeUnit unit){
lock.lock();
//将时间转换为纳秒
long nanoTime = unit.toNanos(timeout);
try{
while(queue.size() == 0){
try {
//等待超时依旧没有获取,返回null
if(nanoTime <= 0){
return null;
}
//该方法返回的是剩余时间
nanoTime = emptyWaitSet.awaitNanos(nanoTime);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
T t = queue.pollFirst();
fullWaitSet.signal();
return t;
}finally {
lock.unlock();
}
}
//阻塞获取
public T take(){
lock.lock();
try{
while(queue.size() == 0){
try {
emptyWaitSet.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
T t = queue.pollFirst();
fullWaitSet.signal();
return t;
}finally {
lock.unlock();
}
}
//阻塞添加
public void put(T t){
lock.lock();
try{
while (queue.size() == capacity){
try {
System.out.println(Thread.currentThread().toString() + "等待加入任务队列:" + t.toString());
fullWaitSet.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(Thread.currentThread().toString() + "加入任务队列:" + t.toString());
queue.addLast(t);
emptyWaitSet.signal();
}finally {
lock.unlock();
}
}
//超时阻塞添加
public boolean offer(T t,long timeout,TimeUnit timeUnit){
lock.lock();
try{
long nanoTime = timeUnit.toNanos(timeout);
while (queue.size() == capacity){
try {
if(nanoTime <= 0){
System.out.println("等待超时,加入失败:" + t);
return false;
}
System.out.println(Thread.currentThread().toString() + "等待加入任务队列:" + t.toString());
nanoTime = fullWaitSet.awaitNanos(nanoTime);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(Thread.currentThread().toString() + "加入任务队列:" + t.toString());
queue.addLast(t);
emptyWaitSet.signal();
return true;
}finally {
lock.unlock();
}
}
public int size(){
lock.lock();
try{
return queue.size();
}finally{
lock.unlock();
}
}
//从形参接收拒绝策略的put方法
public void tryPut(RejectPolicy<T> rejectPolicy,T task){
lock.lock();
try{
if(queue.size() == capacity){
rejectPolicy.reject(this,task);
}else{
System.out.println("加入任务队列:" + task);
queue.addLast(task);
emptyWaitSet.signal();
}
}finally {
lock.unlock();
}
}
}
步骤3:自定义线程池
class ThreadPool{
//阻塞队列
BlockingQueue<Runnable> taskQue;
//线程集合
HashSet<Worker> workers = new HashSet<>();
//拒绝策略
private RejectPolicy<Runnable> rejectPolicy;
//构造方法
public ThreadPool(int coreSize,long timeout,TimeUnit timeUnit,int queueCapacity,RejectPolicy<Runnable> rejectPolicy){
this.coreSize = coreSize;
this.timeout = timeout;
this.timeUnit = timeUnit;
this.rejectPolicy = rejectPolicy;
taskQue = new BlockingQueue<Runnable>(queueCapacity);
}
//线程数
private int coreSize;
//任务超时时间
private long timeout;
//时间单元
private TimeUnit timeUnit;
//线程池的执行方法
public void execute(Runnable task){
//当线程数大于等于coreSize的时候,将任务放入阻塞队列
//当线程数小于coreSize的时候,新建一个Worker放入workers
//注意workers类不是线程安全的, 需要加锁
synchronized (workers){
if(workers.size() >= coreSize){
// taskQue.put(task);
//死等
//带超时等待
//让调用者放弃执行任务
//让调用者抛出异常
//让调用者自己执行任务
taskQue.tryPut(rejectPolicy,task);
}else {
Worker worker = new Worker(task);
System.out.println(Thread.currentThread().toString() + "新增worker:" + worker + ",task:" + task);
workers.add(worker);
worker.start();
}
}
}
//工作类
class Worker extends Thread{
private Runnable task;
public Worker(Runnable task){
this.task = task;
}
@Override
public void run() {
//巧妙的判断
while(task != null || (task = taskQue.poll(timeout,timeUnit)) != null){
try{
System.out.println(Thread.currentThread().toString() + "正在执行:" + task);
task.run();
}catch (Exception e){
}finally {
task = null;
}
}
synchronized (workers){
System.out.println(Thread.currentThread().toString() + "worker被移除:" + this.toString());
workers.remove(this);
}
}
}
}
步骤4:编写测试类
public class ThreadPoolTest {
public static void main(String[] args) {
ThreadPool threadPool = new ThreadPool(1, 1000, TimeUnit.MILLISECONDS, 1, (queue,task)->{
//死等
// queue.put(task);
//带超时等待
// queue.offer(task, 1500, TimeUnit.MILLISECONDS);
//让调用者放弃任务执行
// System.out.println("放弃:" + task);
//让调用者抛出异常
// throw new RuntimeException("任务执行失败" + task);
//让调用者自己执行任务
task.run();
});
for (int i = 0; i <3; i++) {
int j = i;
threadPool.execute(()->{
try {
System.out.println(Thread.currentThread().toString() + "执行任务:" + j);
Thread.sleep(1000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
}
}
ThreadPoolExecutor
说明:
-
ScheduledThreadPoolExecutor是带调度的线程池
-
ThreadPoolExecutor是不带调度的线程池
线程池状态
ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量
| 状态名 | 高3位 | 接收新任务 | 处理阻塞队列任务 | 说明 |
|---|---|---|---|---|
| RUNNING | 111 | Y | Y | |
| SHUTDOWN | 000 | N | Y | 不会接收新任务,但会处理阻塞队列剩余 任务 |
| STOP | 001 | N | N | 会中断正在执行的任务,并抛弃阻塞队列 任务 |
| TIDYING | 010 | 任务全执行完毕,活动线程为 0 即将进入 终结 | ||
| TERMINATED | 011 | 终结状态 |
从数字上比较,TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING
这些信息存储在一个原子变量 ctl 中,目的是将线程池状态与线程个数合二为一,这样就可以用一次 cas 原子操作 进行赋值
// c 为旧值, ctlOf 返回结果为新值
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))));
// rs 为高 3 位代表线程池状态, wc 为低 29 位代表线程个数,ctl 是合并它们
private static int ctlOf(int rs, int wc) { return rs | wc; }
构造方法
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
-
corePoolSize 核心线程数目 (最多保留的线程数)
-
maximumPoolSize 最大线程数目
-
keepAliveTime 生存时间 - 针对救急线程
-
unit 时间单位 - 针对救急线程
-
workQueue 阻塞队列
-
threadFactory 线程工厂 - 可以为线程创建时起个好名字
-
handler 拒绝策略
graph LR
subgraph 阻塞队列
size=2
t3(任务3)
t4(任务4)
end
subgraph 线程池c-2,m=3
ct1(核心线程1)
ct2(核心线程2)
mt1(救急线程1)
ct1 --> t1(任务1)
ct2 --> t2(任务2)
end
t1(任务1)
style ct1 fill:#ccf,stroke:#f66,stroke-width:2px
style ct2 fill:#ccf,stroke:#f66,stroke-width:2px
style mt1 fill:#ccf,stroke:#f66,stroke-width:2px,stroke-dasharray:5,5
-
线程池中刚开始没有线程,当一个任务提交给线程池后,线程池会创建一个新线程来执行任务。
-
当线程数达到 corePoolSize 并没有线程空闲,这时再加入任务,新加的任务会被加入workQueue 队列排 队,直到有空闲的线程。
-
如果队列选择了有界队列,那么任务超过了队列大小时,会创建 maximumPoolSize - corePoolSize 数目的线程来救急。
-
如果线程到达 maximumPoolSize 仍然有新任务这时会执行拒绝策略。拒绝策略 jdk 提供了 4 种实现,其它 著名框架也提供了实现
-
AbortPolicy 让调用者抛出 RejectedExecutionException 异常,这是默认策略
-
CallerRunsPolicy 让调用者运行任务
-
DiscardPolicy 放弃本次任务
-
DiscardOldestPolicy 放弃队列中最早的任务,本任务取而代之
-
Dubbo 的实现,在抛出 RejectedExecutionException 异常之前会记录日志,并 dump 线程栈信息,方 便定位问题
-
Netty 的实现,是创建一个新线程来执行任务
-
ActiveMQ 的实现,带超时等待(60s)尝试放入队列,类似我们之前自定义的拒绝策略
-
PinPoint 的实现,它使用了一个拒绝策略链,会逐一尝试策略链中每种拒绝策略
-
-
当高峰过去后,超过corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由 keepAliveTime 和 unit 来控制。
根据这个构造方法,JDK Executors 类中提供了众多工厂方法来创建各种用途的线程池。
newFixedThreadPool
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
内部调用了:ThreadPoolExecutor的一个构造方法
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
默认工厂以及默认构造线程的方法:
DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
}
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r,
namePrefix + threadNumber.getAndIncrement(),
0);
if (t.isDaemon())
t.setDaemon(false);
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
默认拒绝策略:抛出异常
private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
特点
-
核心线程数 == 最大线程数(没有救急线程被创建),因此也无需超时时间
-
阻塞队列是无界的,可以放任意数量的任务
评价 适用于任务量已知,相对耗时的任务