梯度消失与爆炸
- E𝑿∗𝒀=𝑬𝑿∗𝑬𝒀
- D𝑿=𝑬X𝟐[𝑬𝑿]𝟐
- D𝑿+𝒀=𝑫𝑿+𝑫𝒀
- 1.2.3 ⇒ D(XY)=D(X)D(Y)+D(X)[𝑬𝒀]𝟐+D(Y)[𝑬𝑿]𝟐
若E(X)=0,E(Y)=0
D(X*Y)=D(X)*D(Y)
Xavier初始化
方差一致性:保持数据尺度维持在恰当范围,通常方差为1激活函数:饱和函数,如Sigmoid,Tanh
参考文献:《Understanding the difficulty of training deep feedforward neural networks》
Kaiming初始化
方差一致性:保持数据尺度维持在恰当范围,通常方差为1激活函数:ReLU及其变种
《Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification》
nn.init.calculate_gain
nn.init.calculate_gain 主要功能:计算激活函数的方差变化尺度 主要参数:
- nonlinearity: 激活函数名称
- param: 激活函数的参数,如LeakyReLU的negative_slop
示例代码
# -*- coding: utf-8 -*-
import os
import torch
import random
import numpy as np
import torch.nn as nn
from tools.common_tools import set_seed
set_seed(1) # 设置随机种子
class MLP(nn.Module):
def __init__(self, neural_num, layers):
super(MLP, self).__init__()
self.linears = nn.ModuleList([nn.Linear(neural_num, neural_num, bias=False) for i in range(layers)])
self.neural_num = neural_num
def forward(self, x):
for (i, linear) in enumerate(self.linears):
x = linear(x)
x = torch.relu(x)
print("layer:{}, std:{}".format(i, x.std()))
if torch.isnan(x.std()):
print("output is nan in {} layers".format(i))
break
return x
def initialize(self):
for m in self.modules():
if isinstance(m, nn.Linear):
# nn.init.normal_(m.weight.data, std=np.sqrt(1/self.neural_num)) # normal: mean=0, std=1
# a = np.sqrt(6 / (self.neural_num + self.neural_num))
#
# tanh_gain = nn.init.calculate_gain('tanh')
# a *= tanh_gain
#
# nn.init.uniform_(m.weight.data, -a, a)
# nn.init.xavier_uniform_(m.weight.data, gain=tanh_gain)
# nn.init.normal_(m.weight.data, std=np.sqrt(2 / self.neural_num))
nn.init.kaiming_normal_(m.weight.data)
flag = 0
# flag = 1
if flag:
layer_nums = 100
neural_nums = 256
batch_size = 16
net = MLP(neural_nums, layer_nums)
net.initialize()
inputs = torch.randn((batch_size, neural_nums)) # normal: mean=0, std=1
output = net(inputs)
print(output)
# ======================================= calculate gain =======================================
# flag = 0
flag = 1
if flag:
x = torch.randn(10000)
out = torch.tanh(x)
gain = x.std() / out.std()
print('gain:{}'.format(gain))
tanh_gain = nn.init.calculate_gain('tanh')
print('tanh_gain in PyTorch:', tanh_gain)