算法简介
插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序在实现上,通常采用 in-place 排序(即只需用到 的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
算法描述
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤 3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后;
- 重复步骤 2~5。
动图演示
代码实现
public class InsertSort {
public static int[] insertSort(int[] arr) {
if(arr == null || arr.length < 2)
return arr;
int n = arr.length;
for (int i = 1; i < n; i++) {
int temp = arr[i];
int k = i - 1;
while(k >= 0 && arr[k] > temp)
k--;
//腾出位置插进去,要插的位置是 k + 1;
for(int j = i ; j > k + 1; j--)
arr[j] = arr[j-1];
//插进去
arr[k+1] = temp;
}
return arr;
}
}
复杂度分析
在插入排序中,若数列有n个数,当待排序数组是有序时,是最优的情况,此时只需当前数跟前一个数比较一下就可以了,这时一共需要比较N- 1次,因此最好情况下的时间复杂度为 。
当待排序数组是逆序的时,此时需要比较次数最多,总比较次数为:,因此插入排序最坏情况下的时间复杂度为 。
插入排序的空间复杂度为常数阶 。