概述
顾名思义,ConcurrentHashMap,是支持并发的HashMap。作为散列表,它采用的数据结构与HashMap基本一致,都是采取array+list(linkedlist)/tree(红黑树)的形式。作为支持并发的集合,与Hashtable简单的采取synchronized关键字实现同步,ConcurrentHashMap使用了更为复杂的机制,包括volatile变量、原子操作CAS、synchronized等。借此,ConcurrentHashMap在get()时不需要加锁,put()时也只是对应bin加锁,比Hashtable更快。由于ConcurrentHashMap的数据结构及其实现与HashMap相似,所以本文不再多述,而关注于并发实现。
构造方法
CurrentHashMap的构造方法很简单,设置capacity(容量)、loadFactor(装载因子)、concurrencyLevel(并发数量,保留参数,实际上没有使用)等属性。同HashMap,CurrentHashMap也选择了延时初始化:在第一次put的时候进行初始化。 与HashMap相比,CurrentHashMap拥有一个控制并发的关键变量:sizeCtl。当map未初始化时,sizeCtl=初始化容量;初始化后,sizeCtl>0时,则代表着下次再散列的门槛容量,sizeCtl<0时,则代表map正在进行初始化或者再散列(-1表示正在初始化)
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
// MAXIMUM_CAPACITY=1 << 30
// 同HashMap,进行了散列优化,需要保证cap为2的次方形式
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
// 未初始化时,sizeCtl=初始化容量
this.sizeCtl = cap;
}
private static final int tableSizeFor(int c) {
// 假设c>2^(i-1) && c<=2^i, 则n=2^i-1, n+1=2^i,即不小于n的最大2次方
int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
get
get操作相对简单,调用节点的find()方法。只得注意的是,这里的get操作并不需要加锁。而如果恰好遇上再散列、old table映射到new table的过程而没有找到节点,将会重新进行查找。
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 合理散列的情况下,bin大多只有一个node。所以这里先判断头结点
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// static final int MOVED = -1; // hash for forwarding nodes
// static final int TREEBIN = -2; // hash for roots of trees
// static final int RESERVED = -3; // hash for transient reservations,computeIfAbsent和 compute方法使用
// 调用各自结点(Node的子类)的find方法
// 当为-1、也就是正在在散列的时候,将会不断循环直至在散列完成
// 当为-2、也就是红黑树的根结点时,如果获取锁(内部读写锁)成功则按树结构查找,否则则线性查找
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
put
put时,如果未进行过初始化,将会initTable。如果当前的bin正在进行resize,则会帮助resize,直到整个resize完成,插入新值。
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
// key与value均不支持为null
if (key == null || value == null) throw new NullPointerException();
// 获得hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh; K fk; V fv;
if (tab == null || (n = tab.length) == 0)
// 初始化
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 新bin
if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value))) // 原子操作
break; // no lock when adding to empty bin
}
// 当一个bin的头结点的hash值=MOVED时,这个结点叫做forwarding nodes(正在转移的结点),代表这个bin正在被转移(oldTable->newTable)
else if ((fh = f.hash) == MOVED)
// 帮助转移
tab = helpTransfer(tab, f);
// onlyIfAbsent并且first结点相等
else if (onlyIfAbsent // check first node without acquiring lock
&& fh == hash
&& ((fk = f.key) == key || (fk != null && key.equals(fk)))
&& (fv = f.val) != null)
return fv;
else {
V oldVal = null;
// first node加锁
synchronized (f) {
// 再次检查
if (tabAt(tab, i) == f) {
if (fh >= 0) { // listbin
// bin中元素数量
// addCount方法参数
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
// 遍历,增加新结点至末尾
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key, value);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
// addCount方法参数(>=1)
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
else if (f instanceof ReservationNode)
throw new IllegalStateException("Recursive update");
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
// 计数,见下文
addCount(1L, binCount);
return null;
}
// 初始化(只有一个线程可以进行初始化)
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
// sizeCtl=1.5n
sizeCtl = sc;
}
break;
}
}
return tab;
}
size
在高并发的情况下,只有一个线程能完成CAS,其他线程会不断的循环等待。如果简单的设置count字段来统计,无疑会产生较大的资源浪费。为此,ConcurrentHashMap使用了baseCount与CounterCell[] counterCells来进行count统计与处理。每个counterCell对应着线程的计数,并使用了@Contended注解来避免false sharing的发生。线程只有在尝试更新baseCount失败时,才会尝试去更新counterCell[current]。因此,size()的值由baseCount与counterCells共同决定。
// 避免false sharing
@jdk.internal.vm.annotation.Contended static final class CounterCell {
volatile long value;
CounterCell(long x) { value = x; }
}
public int size() {
long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
final long sumCount() {
CounterCell[] cs = counterCells;
long sum = baseCount;
if (cs != null) {
for (CounterCell c : cs)
if (c != null)
sum += c.value;
}
return sum;
}
在put时,会调用addCount方法,对baseCount与counterCells进行操作。
private final void addCount(long x, int check) {
CounterCell[] cs; long b, s;
if ((cs = counterCells) != null ||
!U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) { // 直接更新basecount失败
CounterCell c; long v; int m;
boolean uncontended = true;
if (cs == null || (m = cs.length - 1) < 0 ||
(c = cs[ThreadLocalRandom.getProbe() & m]) == null || // 当前线程对应的cs[current]=null
!(uncontended = U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) { // 通过CAS更新cs[current]失败
fullAddCount(x, uncontended); // 竞争条件下
return;
}
// check<=1(存在空bin)直接返回不进入resize检查
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) // 当前容量大于再散列门槛
&& (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) {
// sizeCtl中用于管理多线程resize的stamp(容量=n时)
int rs = resizeStamp(n);
// 协助resize,与helpTransfer方法类似
if (sc < 0) {
// stamp不等(n发生了变化)
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// 此时sizeCtl是一个绝对值很大的复数,以sc+1来统计当前resize线程数
if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 开始resize时,设sc=rs << RESIZE_STAMP_SHIFT + 2<0
else if (U.compareAndSetInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
private final void fullAddCount(long x, boolean wasUncontended) {
int h;
if ((h = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit(); // force initialization
h = ThreadLocalRandom.getProbe();
wasUncontended = true;
}
boolean collide = false; // True if last slot nonempty
for (;;) {
CounterCell[] cs; CounterCell c; int n; long v;
// counterCells已被初始化过
if ((cs = counterCells) != null && (n = cs.length) > 0) {
// 当前线程对应的cs[cur]=null,无冲突
if ((c = cs[(n - 1) & h]) == null) {
if (cellsBusy == 0) { // Try to attach new Cell
CounterCell r = new CounterCell(x); // Optimistic create
if (cellsBusy == 0 &&
U.compareAndSetInt(this, CELLSBUSY, 0, 1)) { // lock
boolean created = false;
try { // Recheck under lock
CounterCell[] rs; int m, j;
if ((rs = counterCells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally {
// unlock
cellsBusy = 0;
}
if (created)
break; // 成功,跳出循环
// Recheck失败,继续循环
continue; // Slot is now non-empty
}
}
collide = false;
}
// 产生冲突,推进一次hash值h,继续循环
else if (!wasUncontended) // CAS already known to fail,肯定是竞争状态下
wasUncontended = true; // Continue after rehash
// 尝试CAS
else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
break;
else if (counterCells != cs || n >= NCPU)
collide = false; // At max size or stale
// 上述条件皆不成立,说明产生了冲突。若再次推进h后仍然失败,则进行resize
else if (!collide)
collide = true;
// 进行resize
else if (cellsBusy == 0 &&
U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
try {
if (counterCells == cs) // Expand table unless stale
counterCells = Arrays.copyOf(cs, n << 1);
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
h = ThreadLocalRandom.advanceProbe(h);
}
// counterCells未被初始化且lock counterCells成功,则进行初始化
else if (cellsBusy == 0 && counterCells == cs &&
U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
boolean init = false;
try { // Initialize table
if (counterCells == cs) {
CounterCell[] rs = new CounterCell[2];
rs[h & 1] = new CounterCell(x);
counterCells = rs;
init = true;
}
} finally {
cellsBusy = 0;
}
if (init)
break;
}
// lock counterCells失败,尝试直接更新base
else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
break; // Fall back on using base
}
}
再散列
再散列入口在addcount方法中。简单来说,ConcurrentHashMap通过sizeCtl字段来判断是否正在进行再散列。如果正在进行,就去尝试帮助再散列。怎么帮助呢?原来ConcurrentHashMap是分段再散列的,其中有 个变量TRANSFERINDEX,当前线程再散列的table index的上边界,而转移的数量stride与cpu核数有关。TRANSFERINDEX-1与TRANSFERINDEX-stride就是这次线程散列的范围。
private final void addCount(long x, int check) {
// ...
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
// sizeCtl中用于管理多线程resize的stamp(容量=n时)
int rs = resizeStamp(n);
// 协助resize,与helpTransfer方法类似
if (sc < 0) {
// stamp不等(n发生了变化)
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// sizeCtl是一个绝对值很大的复数,以sc+1来统计当前resize线程数
if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 开始resize时,设sc=rs << RESIZE_STAMP_SHIFT + 2<0
else if (U.compareAndSetInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
// =null则已经结束
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
// sizeCtl中用于管理多线程的stamp
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
// 正在resize
(sc = sizeCtl) < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}
// 将第RESIZE_STAMP_BITS设为1,确保开始resize时,sizeCtl=(rs << RESIZE_STAMP_SHIFT) + 2<0
static final int resizeStamp(int n) {
return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
}
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME(Out of Memory Error)
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
// The next table index (plus one) to split while resizing
transferIndex = n;
}
int nextn = nextTab.length;
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
// 是否推进
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
// 分配转移区间
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
// 越界||已完成
if (--i >= bound || finishing)
advance = false;
// 转移任务已被分完
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
// 竞争成功,当前线程负责转移nextIndex-1至nextBound(nextIndex - stride)部分
else if (U.compareAndSetInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
// 执行转移
if (i < 0 || i >= n || i + n >= nextn) { // 转移结束
int sc;
if (finishing) {
nextTable = null;
table = nextTab;
// sizeCtl=1.5n
sizeCtl = (n << 1) - (n >>> 1);
return;
}
// resize线程数-1
if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
// n发生了改变
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
// 头结点为null时,直接设为ForwardingNode完成转移
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
// 开始转移
else {
// 头结点加锁
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
// 假设n=2^k,若runBit=0,则fh的k位为0,fh&(2*2^k-1)=fh&(2^k-1),所以f在nextTab与当前tab中的下标相等,否则同理,f在nextTab为当前下标+n
int runBit = fh & n;
Node<K,V> lastRun = f;
// 遍历至尾结点
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
// 下标不动的node list
ln = lastRun;
hn = null;
}
else {
// 下标+n的node list
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
// 设头结点为ForwardingNode
setTabAt(tab, i, fwd);
// 继续推进
advance = true;
}
else if (f instanceof TreeBin) {
// ...
}
}
}
}
}
}
TreeBin
相对于HashMap的table[] 直接存储tree的root节点,ConcurrentHashMap存的则是一个特别的结点:first。顾名思义,first指向TreeBin中第一个插入的结点
TreeBin(TreeNode<K,V> b) {
super(TREEBIN, null, null);
this.first = b;
// ...
}
first结点与next字段的存在,treebin可以在等待或树正在进行重构时,进行顺序遍历来寻找元素。而root只有在真正需要加锁的时候(树重构)的时候才会被加锁,提高了根据root遍历的效率。
static final class TreeBin<K,V> extends Node<K,V> {
TreeNode<K,V> root;
volatile TreeNode<K,V> first;
volatile Thread waiter;
// 低两位表示等待或持有写锁,第三位开始计数读锁数量
volatile int lockState;
// values for lockState
static final int WRITER = 1; // set while holding write lock
static final int WAITER = 2; // set when waiting for write lock
static final int READER = 4; // increment value for setting read lock
// 树重构时需要写锁
private final void lockRoot() {
// cas设置写锁失败
if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
contendedLock(); // offload to separate method
}
// 解除全部锁状态
private final void unlockRoot() {
lockState = 0;
}
private final void contendedLock() {
boolean waiting = false;
for (int s;;) {
// s&11..01=0,s=00..x0,除了等待锁其他均未被抢占(写写、读写互斥)
if (((s = lockState) & ~WAITER) == 0) {
// 直接竞争写锁
if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
if (waiting)
// 清除waiter(当前线程)
waiter = null;
return;
}
}
// 等待锁未被抢占
else if ((s & WAITER) == 0) {
// 竞争等待锁
if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
waiting = true;
// 竞争等待锁成功,waiter=当前线程
waiter = Thread.currentThread();
}
}
else if (waiting)
// 竞争等待锁成功,阻塞当前线程
LockSupport.park(this);
}
}
final Node<K,V> find(int h, Object k) {
if (k != null) {
for (Node<K,V> e = first; e != null; ) {
int s; K ek;
// 等待锁或写锁被抢占,树正在或等待进行重构,使用next进行线性搜索
if (((s = lockState) & (WAITER|WRITER)) != 0) {
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
e = e.next;
}
// 设置读锁成功
else if (U.compareAndSetInt(this, LOCKSTATE, s,
s + READER)) {
TreeNode<K,V> r, p;
try {
p = ((r = root) == null ? null :
r.findTreeNode(h, k, null));
} finally {
Thread w;
// 释放读锁
if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
// 存在waiter线程
(READER|WAITER) && (w = waiter) != null)
// 恢复waiter线程
LockSupport.unpark(w);
}
return p;
}
}
}
return null;
}
}
遍历
key、value、entry迭代器的实现类似,这里key来举例
/**
* Base of key, value, and entry Iterators. Adds fields to
* Traverser to support iterator.remove.
*/
static class BaseIterator<K,V> extends Traverser<K,V> {
final ConcurrentHashMap<K,V> map;
Node<K,V> lastReturned;
BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
ConcurrentHashMap<K,V> map) {
super(tab, size, index, limit);
this.map = map;
advance();
}
public final boolean hasNext() { return next != null; }
public final boolean hasMoreElements() { return next != null; }
public final void remove() {
Node<K,V> p;
if ((p = lastReturned) == null)
throw new IllegalStateException();
lastReturned = null;
// 替换成null,如果原值不为null且被替换成null,则size--
map.replaceNode(p.key, null, null);
}
}
static final class KeyIterator<K,V> extends BaseIterator<K,V>
implements Iterator<K>, Enumeration<K> {
KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
ConcurrentHashMap<K,V> map) {
super(tab, size, index, limit, map);
}
public final K next() {
Node<K,V> p;
if ((p = next) == null)
throw new NoSuchElementException();
K k = p.key;
lastReturned = p;
advance();
return k;
}
public final K nextElement() { return next(); }
}
可见KeyIterator的实现是扩展了BaseIterator,而BaseIterator又扩展了Traverser。其中的关键方法hasNext()和next(),有来自Traverser的实现。
static class Traverser<K,V> {
Node<K,V>[] tab; // current table; updated if resized
Node<K,V> next; // the next entry to use
// 可以看做一个TableStack list
TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
int index; // index of bin to use next
int baseIndex; // current index of initial table
int baseLimit; // index bound for initial table
final int baseSize; // initial table size
Traverser(Node<K,V>[] tab, int size, int index, int limit) {
this.tab = tab;
this.baseSize = size;
this.baseIndex = this.index = index;
this.baseLimit = limit;
this.next = null;
}
/**
* Advances if possible, returning next valid node, or null if none.
*/
final Node<K,V> advance() {
Node<K,V> e;
// 如果bin中仍然有元素,则返回e.next
if ((e = next) != null)
e = e.next;
for (;;) {
Node<K,V>[] t; int i, n; // must use locals in checks
if (e != null)
return next = e;
// 非法范围
if (baseIndex >= baseLimit || (t = tab) == null ||
(n = t.length) <= (i = index) || i < 0)
return next = null;
// 下一个bin为listbin时,在下一次循环返回;不为listbin时,进入if
if ((e = tabAt(t, i)) != null && e.hash < 0) {
if (e instanceof ForwardingNode) {
// 切换至新tab
tab = ((ForwardingNode<K,V>)e).nextTable;
e = null;
// 保存当前遍历的状态
pushState(t, i, n);
continue;
}
// 返回treebin的first结点
else if (e instanceof TreeBin)
e = ((TreeBin<K,V>)e).first;
else
e = null;
}
// stack不为空,则说明有暂存的未遍历bin
if (stack != null)
recoverState(n);
// 扩容后,原bin中元素位于新tab的原tab下标i或者i+原tab.length处
else if ((index = i + baseSize) >= n)
index = ++baseIndex; // visit upper slots if present
}
}
/**
* Saves traversal state upon encountering a forwarding node.
*/
private void pushState(Node<K,V>[] t, int i, int n) {
TableStack<K,V> s = spare; // reuse if possible
if (s != null)
spare = s.next;
else
s = new TableStack<K,V>();
s.tab = t;
s.length = n;
s.index = i;
s.next = stack;
stack = s;
}
/**
* Possibly pops traversal state.
*
* @param n length of current table
*/
private void recoverState(int n) {
TableStack<K,V> s; int len;
while ((s = stack) != null && (index += (len = s.length)) >= n) {
n = len;
index = s.index;
tab = s.tab;
s.tab = null;
TableStack<K,V> next = s.next;
s.next = spare; // save for reuse
stack = next;
spare = s;
}
// 扩容后
if (s == null && (index += baseSize) >= n)
index = ++baseIndex;
}
}
static final class TableStack<K,V> {
int length;
int index;
Node<K,V>[] tab;
TableStack<K,V> next;
}