并发编程-Monitor 概念(二)

109 阅读30分钟

开启掘金成长之旅!这是我参与「掘金日新计划 · 12 月更文挑战」的第11天,点击查看活动详情

自旋优化

重量级锁竞争的时候,还可以使用自旋来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退出了同步 块,释放了锁),这时当前线程就可以避免阻塞。

自旋重试成功的情况

线程1 ( core 1上)对象Mark线程2 ( core 2上)
-10(重量锁)-
访问同步块,获取monitor10(重量锁)重量锁指针-
成功(加锁)10(重量锁)重量锁指针-
执行同步块10(重量锁)重量锁指针-
执行同步块10(重量锁)重量锁指针访问同步块,获取 monitor
执行同步块10(重量锁)重量锁指针自旋重试
执行完毕10(重量锁)重量锁指针自旋重试
成功(解锁)01(无锁)自旋重试
-10(重量锁)重量锁指针成功(加锁)
-10(重量锁)重量锁指针执行同步块
-......

自旋重试失败的情况

线程1 ( core 1上)对象Mark线程2( core 2上)
-10(重量锁)-
访问同步块,获取monitor10(重量锁)重量锁指针-
成功(加锁)10(重量锁)重量锁指针-
执行同步块10(重量锁)重量锁指针-
执行同步块10(重量锁)重量锁指针访问同步块,获取monitor
执行同步块10(重量锁)重量锁指针自旋重试
执行同步块10(重量锁)重量锁指针自旋重试
执行同步块10(重量锁)重量锁指针自旋重试
执行同步块10(重量锁)重量锁指针阻塞
-......
  • 自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。

  • 在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会 高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。

  • Java 7 之后不能控制是否开启自旋功能

偏向锁

轻量级锁在没有竞争时(就自己这个线程),每次重入仍然需要执行 CAS 操作。

Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现 这个线程 ID 是自己的就表示没有竞争,不用重新 CAS。以后只要不发生竞争,这个对象就归该线程所有

例如:

static final Object obj = new Object();
public static void m1() {
    synchronized( obj ) {
        // 同步块 A
        m2();
    }
}
public static void m2() {
    synchronized( obj ) {
        // 同步块 B
        m3();
    }
}
public static void m3() {
    synchronized( obj ) {
        // 同步块 C
    }
}
graph LR
subgraph 偏向锁
t5("m1内调用synchronized(obj)")
t6("m2内调用synchronized(obj)")
t7("m2内调用synchronized(obj)")
t8(对象)
t5 -.用ThreadID替换MarkWord.-> t8
t6 -.检查ThreadID是否是自己.-> t8
t7 -.检查ThreadID是否是自己.-> t8
end
subgraph 轻量级锁
t1("m1内调用synchronized(obj)")
t2("m2内调用synchronized(obj)")
t3("m2内调用synchronized(obj)")
t1 -.生成锁记录.-> t1
t2 -.生成锁记录.-> t2
t3 -.生成锁记录.-> t3
t4(对象)
t1 -.用锁记录替换markword.-> t4
t2 -.用锁记录替换markword.-> t4
t3 -.用锁记录替换markword.-> t4
end

偏向状态

回忆一下对象头格式

|--------------------------------------------------------------------|--------------------|
|                          Mark Word (64 bits)                       |        State       |
|--------------------------------------------------------------------|--------------------|
| unused:25 | hashcode:31 | unused:1 | age:4 | biased_lock:0 |  01   |        Normal      |
|--------------------------------------------------------------------|--------------------|
| thread:54 |   epoch:2   | unused:1 | age:4 | biased_lock:1 |  01   |        Biased      |
|--------------------------------------------------------------------|--------------------|
|                    ptr_to_lock_record:62                   |  00   | Lightweight Locked |
|--------------------------------------------------------------------|--------------------|
|                 ptr_to_heavyweight_monitor:62              |  10   | Heavyweight Locked |
|--------------------------------------------------------------------|--------------------|
|                                                            |  11   |    Marked for GC   |
|--------------------------------------------------------------------|--------------------|

一个对象创建时:

  • 如果开启了偏向锁(默认开启),那么对象创建后,markword 值为 0x05 即最后 3 位为 101,这时它的 thread、epoch、age 都为 0

  • 偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加 VM 参数- XX:BiasedLockingStartupDelay=0来禁用延迟

  • 如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、 age 都为 0,第一次用到 hashcode 时才会赋值

1) 测试延迟特性

2) 测试偏向锁

class Dog {}

利用 jol 第三方工具来查看对象头信息(注意这里我扩展了 jol 让它输出更为简洁)

// 添加虚拟机参数 -XX:BiasedLockingStartupDelay=0 
public static void main(String[] args) throws IOException {
    Dog d = new Dog();
    ClassLayout classLayout = ClassLayout.parseInstance(d);
    new Thread(() -> {
        log.debug("synchronized 前");
        System.out.println(classLayout.toPrintableSimple(true));
        synchronized (d) {
            log.debug("synchronized 中");
            System.out.println(classLayout.toPrintableSimple(true));
        }
        log.debug("synchronized 后");
        System.out.println(classLayout.toPrintableSimple(true));
    }, "t1").start();
}
11:08:58.117 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 
11:08:58.121 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101 
11:08:58.121 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101 

注意

处于偏向锁的对象解锁后,线程 id 仍存储于对象头中

3)测试禁用

在上面测试代码运行时在添加 VM 参数 -XX:-UseBiasedLocking 禁用偏向锁

输出

11:13:10.018 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
11:13:10.021 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 00010100 11110011 10001000 
11:13:10.021 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 

4)测试 hashCode

  • 正常状态对象一开始是没有 hashCode 的,第一次调用才生成

撤销 - 调用对象 hashCode

调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被 撤销

  • 轻量级锁会在锁记录中记录 hashCode

  • 重量级锁会在 Monitor 中记录 hashCode

在调用 hashCode 后使用偏向锁,记得去掉-XX:-UseBiasedLocking

输出

11:22:10.386 c.TestBiased [main] - 调用 hashCode:1778535015 
11:22:10.391 c.TestBiased [t1] - synchronized 前
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001 
11:22:10.393 c.TestBiased [t1] - synchronized 中
00000000 00000000 00000000 00000000 00100000 11000011 11110011 01101000 
11:22:10.393 c.TestBiased [t1] - synchronized 后
00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001 

撤销 - 其它线程使用对象

当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁

private static void test2() throws InterruptedException {
    Dog d = new Dog();
    Thread t1 = new Thread(() -> {
        synchronized (d) {
            log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
        }
        synchronized (TestBiased.class) {
            TestBiased.class.notify();
        }
        // 如果不用 wait/notify 使用 join 必须打开下面的注释
        // 因为:t1 线程不能结束,否则底层线程可能被 jvm 重用作为 t2 线程,底层线程 id 是一样的
        /*try {
 System.in.read();
 } catch (IOException e) {
 e.printStackTrace();
 }*/
    }, "t1");
    t1.start();
    Thread t2 = new Thread(() -> {
        synchronized (TestBiased.class) {
            try {
                TestBiased.class.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
        synchronized (d) {
            log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
        }
        log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
    }, "t2");
    t2.start();
}

输出

[t1] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 
[t2] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 
[t2] - 00000000 00000000 00000000 00000000 00011111 10110101 11110000 01000000 
[t2] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 

撤销 - 调用 wait/notify

public static void main(String[] args) throws InterruptedException {
    Dog d = new Dog();
    Thread t1 = new Thread(() -> {
        log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
        synchronized (d) {
            log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
            try {
                d.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true));
        }
    }, "t1");
    t1.start();
    new Thread(() -> {
        try {
            Thread.sleep(6000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        synchronized (d) {
            log.debug("notify");
            d.notify();
        }
    }, "t2").start();
}

输出

[t1] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 
[t1] - 00000000 00000000 00000000 00000000 00011111 10110011 11111000 00000101 
[t2] - notify 
[t1] - 00000000 00000000 00000000 00000000 00011100 11010100 00001101 11001010 

批量重偏向

如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2,重偏向会重置对象 的 Thread ID

当撤销偏向锁阈值超过 20 次后,jvm 会这样觉得,我是不是偏向错了呢,于是会在给这些对象加锁时重新偏向至 加锁线程

private static void test3() throws InterruptedException {
    Vector<Dog> list = new Vector<>();
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 30; i++) {
            Dog d = new Dog();
            list.add(d);
            synchronized (d) {
                log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            }
        }
        synchronized (list) {
            list.notify();
        } 
    }, "t1");
    t1.start();

    Thread t2 = new Thread(() -> {
        synchronized (list) {
            try {
                list.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        log.debug("===============> ");
        for (int i = 0; i < 30; i++) {
            Dog d = list.get(i);
            log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            synchronized (d) {
                log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            }
            log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
        }
    }, "t2");
    t2.start();
}

输出

[t1] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t1] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - ===============> 
[t2] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 0 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 1 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 2 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 2 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 3 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 4 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 5 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 5 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 6 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 6 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101
[t2] - 7 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 8 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 9 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 9 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 10 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 11 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 12 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 13 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 13 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 14 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 15 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 16 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 17 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 17 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 18 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 
[t2] - 18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 
[t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 

批量撤销

当撤销偏向锁阈值超过 40 次后,jvm 会这样觉得,自己确实偏向错了,根本就不该偏向。于是整个类的所有对象 都会变为不可偏向的,新建的对象也是不可偏向的

static Thread t1,t2,t3;
private static void test4() throws InterruptedException {
    Vector<Dog> list = new Vector<>();
    int loopNumber = 39;
    t1 = new Thread(() -> {
        for (int i = 0; i < loopNumber; i++) {
            Dog d = new Dog();
            list.add(d);
            synchronized (d) {
                log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            }
        }
        LockSupport.unpark(t2);
    }, "t1");
    t1.start();
    t2 = new Thread(() -> {
        LockSupport.park();
        log.debug("===============> ");
        for (int i = 0; i < loopNumber; i++) {
            Dog d = list.get(i);
            log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            synchronized (d) {
                log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            }
            log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
        }
        LockSupport.unpark(t3);
    }, "t2");
    t2.start();
    t3 = new Thread(() -> {
        LockSupport.park();
        log.debug("===============> ");
        for (int i = 0; i < loopNumber; i++) {
            Dog d = list.get(i);
            log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            synchronized (d) {
                log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
            }
            log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true));
        }
    }, "t3");
    t3.start();
    t3.join();
    log.debug(ClassLayout.parseInstance(new Dog()).toPrintableSimple(true));
}

参考资料

github.com/farmerjohng…

www.cnblogs.com/LemonFive/p…

www.cnblogs.com/LemonFive/p…

[偏向锁论文](Eliminating Synchronization-Related Atomic Operations with Biased Locking and Bulk Rebiasing (oracle.com))

锁消除

锁消除

@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@Warmup(iterations=3)
@Measurement(iterations=5)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class MyBenchmark {
    static int x = 0;
    @Benchmark
    public void a() throws Exception {
        x++;
    }
    @Benchmark
    public void b() throws Exception {
        Object o = new Object();
        synchronized (o) {
            x++;
        }
    }
}

java -jar benchmarks.jar

Benchmark       Mode    Samples   Score     Score error   Units 
c.i.MyBenchmark.a   avgt    5       1.542       0.056     ns/op 
c.i.MyBenchmark.b   avgt    5       1.518       0.091     ns/op 

java -XX:-EliminateLocks -jar benchmarks.jar

Benchmark       Mode    Samples     Score     Score error   Units 
c.i.MyBenchmark.a   avgt    5         1.507     0.108       ns/op 
c.i.MyBenchmark.b   avgt    5         16.976    1.572       ns/op

锁粗化

对相同对象多次加锁,导致线程发生多次重入,可以使用锁粗化方式来优化,这不同于之前讲的细分锁的粒度。