并发编程-共享模型之管程

178 阅读1分钟

开启掘金成长之旅!这是我参与「掘金日新计划 · 12 月更文挑战」的第7天,点击查看活动详情

共享带来的问题

Java代码示例

两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?

static int counter = 0;
public static void main(String[] args) throws InterruptedException {
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 5000; i++) {
            counter++;
        }
    }, "t1");
    Thread t2 = new Thread(() -> {
        for (int i = 0; i < 5000; i++) {
            counter--;
        }
    }, "t2");
    t1.start();
    t2.start();
    t1.join();
    t2.join();
    log.debug("{}",counter);
}

问题分析

以上的结果可能是正数、负数、零。为什么呢?因为 Java 中对静态变量的自增,自减并不是原子操作,要彻底理解,必须从字节码来进行分析

例如对于 i++ 而言(i 为静态变量),实际会产生如下的 JVM 字节码指令:

getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
iadd // 自增
putstatic i // 将修改后的值存入静态变量i

而对应 i-- 也是类似:

getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
isub // 自减
putstatic i // 将修改后的值存入静态变量i

而 Java 的内存模型如下,完成静态变量的自增,自减需要在主存和工作内存中进行数据交换:

如果是单线程以上 8 行代码是顺序执行(不会交错)没有问题:

但多线程下这 8 行代码可能交错运行:

出现负数的情况:

出现正数的情况:

临界区 Critical Section

  • 一个程序运行多个线程本身是没有问题的

  • 问题出在多个线程访问共享资源

    • 多个线程读共享资源其实也没有问题

    • 在多个线程对共享资源读写操作时发生指令交错,就会出现问题

  • 一段代码块内如果存在对共享资源的多线程读写操作,称这段代码块为临界区

static int counter = 0;
static void increment()
    // 临界区
{
    counter++;
}
static void decrement()
    // 临界区
{
    counter--;
}

竞态条件 Race Condition

多个线程在临界区内执行,由于代码的执行序列不同而导致结果无法预测,称之为发生了竞态条件

synchronized 解决方案

应用之互斥

为了避免临界区的竞态条件发生,有多种手段可以达到目的。

  • 阻塞式的解决方案:synchronized,Lock

  • 非阻塞式的解决方案:原子变量

本次使用阻塞式的解决方案:synchronized,来解决上述问题,即俗称的【对象锁】,它采用互斥的方式让同一 时刻至多只有一个线程能持有【对象锁】,其它线程再想获取这个【对象锁】时就会阻塞住。这样就能保证拥有锁 的线程可以安全的执行临界区内的代码,不用担心线程上下文切换

注意

虽然 java 中互斥和同步都可以采用 synchronized 关键字来完成,但它们还是有区别的:

  • 互斥是保证临界区的竞态条件发生,同一时刻只能有一个线程执行临界区代码
  • 同步是由于线程执行的先后、顺序不同、需要一个线程等待其它线程运行到某个点

synchronized

语法

synchronized(对象) // 线程1, 线程2(blocked)
{
    临界区
}

解决

static int counter = 0;
static final Object room = new Object();
public static void main(String[] args) throws InterruptedException {
    Thread t1 = new Thread(() -> {
        for (int i = 0; i < 5000; i++) {
            synchronized (room) {
                counter++;
            }
        }
    }, "t1");
    Thread t2 = new Thread(() -> {
        for (int i = 0; i < 5000; i++) {
            synchronized (room) {
                counter--;
            }
        }
    }, "t2");
    t1.start();
    t2.start();
    t1.join();
    t2.join();
    log.debug("{}",counter);
}

思考

synchronized 实际是用对象锁保证了临界区内代码的原子性,临界区内的代码对外是不可分割的,不会被线程切 换所打断。

为了加深理解,请思考下面的问题

  • 如果把 synchronized(obj) 放在 for 循环的外面,如何理解?-- 原子性

  • 如果 t1 synchronized(obj1) 而 t2 synchronized(obj2) 会怎样运作?-- 锁对象

  • 如果 t1 synchronized(obj) 而 t2 没有加会怎么样?如何理解?-- 锁对象

面向对象改进

把需要保护的共享变量放入一个类

class Room {
    int value = 0;
    public void increment() {
        synchronized (this) {
            value++;
        }
    }
    public void decrement() {
        synchronized (this) {
            value--;
        }
    }
    public int get() {
        synchronized (this) {
            return value;
        }
    }
}

@Slf4j
public class Test1 {

    public static void main(String[] args) throws InterruptedException {
        Room room = new Room();
        Thread t1 = new Thread(() -> {
            for (int j = 0; j < 5000; j++) {
                room.increment();
            }
        }, "t1");
        Thread t2 = new Thread(() -> {
            for (int j = 0; j < 5000; j++) {
                room.decrement();
            }
        }, "t2");
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        log.debug("count: {}" , room.get());
    }
}