Go interface 深度解析

505 阅读19分钟

interface

1.1 接口基本概念

接口是一组行为规范的集合。

type Transporter interface {
    //接口里面只定义方法,不定义变量
    move(src string, dest string) (int, error) //方法名 (参数列表) 返回值列表
    whistle(int) int //参数列表和返回值列表里的变量名可以省略
}

只要结构体拥有接口里声明的所有方法,就称该结构体“实现了接口”。一个struct可以同时实现多个接口。

type Car struct { // 无需显式声明它要实现什么接口
    price int
}

func (car Car) move(src string, dest string) (int, error) {
    return car.price, nil
}
func (car Car) whistle(n int) int {
    return n
}

接口的赋值

func (car Car) whistle(n int) int {…}//方法接收者是值
func (ship *Shiper) whistle(n int) int {…} //方法接收者用指针,则实现接口的是指针类型
car := Car{}
ship := Shiper{}
var transporter Transporter
transporter = car 
transporter = &car     //值实现的方法,指针同样也实现了
transporter = &ship

1.2 接口嵌入

type Transporter interface {
	whistle(int) int
}
type Steamer interface {
    Transporter //接口嵌入。相当于Transporter接口定义的行为集合是Steamer的子集
    displacement() int
}

1.3 空接口

空接口类型用interface{}表示。

var i interface{} 

空接口没有定义任何方法,因此任意类型都实现了空接口。

var a int = 5
i = a
func square(x interface{}){} //该函数可以接收任意数据类型

1.4 类型断言

if v, ok := i.(int); ok {//若断言成功,则ok为true,v是具体的类型
	fmt.Printf("i是int类型,其值为%d\n", v)
} else {
	fmt.Println("i不是int类型")
}

当要判断的类型比较多时,就需要写很多if-else,更好的方法是使用switch i.(type)。

switch v := i.(type) {    //隐式地在每个case中声明了一个变量v
case int:  //v已被转为int类型
	fmt.Printf("ele is int, value is %d\n", v)
	//在 Type Switch 语句的 case 子句中不能使用fallthrough
case float64:      //v已被转为float64类型
	fmt.Printf("ele is float64, value is %f\n", v)
case int8, int32, byte: //如果case后面跟多种type,则v还是interface{}类型
	fmt.Printf("ele is %T, value is %d\n", v, v)
}

2. 值接收者和指针接收者的区别

2.1 方法

方法能给用户自定义的类型添加新的行为。它和函数的区别在于方法有一个接收者,给一个函数添加一个接收者,那么它就变成了方法。接收者可以是值接收者指针接收者

而不管方法的接收者是什么类型,该类型的值和指针都可以调用,不必严格符合接收者的类型。

来看个例子:

type Person struct {
	age int
}

func (p Person) howOld() int {
	return p.age
}

func (p *Person) growUp() {
	p.age += 1
}

func main() {
	// qcrao 是值类型
	qcrao := Person{age: 18}

	// 值类型 调用接收者也是值类型的方法
	fmt.Println(qcrao.howOld())

	// 值类型 调用接收者是指针类型的方法
	qcrao.growUp()
	fmt.Println(qcrao.howOld())

	// ----------------------

	// stefno 是指针类型
	stefno := &Person{age: 100}

	// 指针类型 调用接收者是值类型的方法
	fmt.Println(stefno.howOld())

	// 指针类型 调用接收者也是指针类型的方法
	stefno.growUp()
	fmt.Println(stefno.howOld())
}

上例子的输出结果是:

18
19
100
101

调用了 growUp 函数后,不管调用者是值类型还是指针类型,它的 Age 值都改变了。

实际上,当类型和方法的接收者类型不同时,其实是编译器在背后做了一些工作,用一个表格来呈现:

-值接收者指针接收者
值类型调用者方法会使用调用者的一个副本,类似于“传值”使用值的引用来调用方法,上例中,qcrao.growUp() 实际上是 (&qcrao).growUp()
指针类型调用者指针被解引用为值,上例中,stefno.howOld() 实际上是 (*stefno).howOld()实际上也是“传值”,方法里的操作会影响到调用者,类似于指针传参,拷贝了一份指针

2.2 值接收者和指针接收者

实现了接收者是值类型的方法,相当于自动实现了接收者是指针类型的方法;
而实现了接收者是指针类型的方法,不会自动生成对应接收者是值类型的方法。

来看一个例子,就会完全明白:

type coder interface {
	code()
	debug()
}

type Gopher struct {
	language string
}

func (p Gopher) code() {
	fmt.Printf("I am coding %s language\n", p.language)
}

func (p *Gopher) debug() {
	fmt.Printf("I am debuging %s language\n", p.language)
}

func main() {
	var c coder = &Gopher{"Go"}
	c.code()
	c.debug()
}

运行一下,结果:

I am coding Go language
I am debuging Go language

但是如果我们把 main 函数的第一条语句换一下:

func main() {
	var c coder = Gopher{"Go"}
	c.code()
	c.debug()
}

运行一下,报错:

./main.go:23:6: cannot use Gopher literal (type Gopher) as type coder in assignment:
	Gopher does not implement coder (debug method has pointer receiver)

看出这两处代码的差别了吗?第一次是将 &Gopher 赋给了 coder;第二次则是将 Gopher 赋给了 coder

第二次报错是说,Gopher 没有实现 coder,很明显了吧?因为 Gopher 类型并没有实现 debug 方法。表面上看, *Gopher 类型也没有实现 code 方法,但是因为 Gopher 类型实现了 code 方法,所以让 *Gopher 类型自动拥有了 code 方法。

解释:接收者是指针类型的方法,很可能在方法中会对接收者的属性进行更改操作,从而影响接收者;而对于接收者是值类型的方法,在方法中不会对接收者本身产生影响。

2.3 两者分别在何时使用

使用指针作为方法的接收者的理由:

  • 方法能够修改接收者指向的值。
  • 避免在每次调用方法时复制该值,在值的类型为大型结构体时,这样做会更加高效。

是使用值接收者还是指针接收者,不是由该方法是否修改了调用者(也就是接收者)来决定,而是应该基于该类型的本质

如果类型具备“原始的本质”,也就是说它的成员都是由 Go 语言里内置的原始类型,如字符串,整型值等,那就定义值接收者类型的方法。像内置的引用类型,如 slice,map,interface,channel,这些类型比较特殊,声明他们的时候,实际上是创建了一个 header, 对于他们也是直接定义值接收者类型的方法。这样,调用函数时,是直接 copy 了这些类型的 header,而 header 本身就是为复制设计的。

如果类型具备非原始的本质,不能被安全地复制,这种类型总是应该被共享,那就定义指针接收者的方法。比如 go 源码里的文件结构体(struct File)就不应该被复制,应该只有一份实体

类型 T 只有接受者是 T 的方法;而类型 *T 拥有接受者是 T 和 *T 的方法。语法上 T 能直接调 *T 的方法仅仅是 Go 的语法糖。

3. iface 和 eface 的区别是什么

iface 和 eface 都是 Go 中描述接口的底层结构体,区别在于 iface 描述的接口包含方法,而 eface 则是不包含任何方法的空接口:interface{}

type iface struct {
	tab  *itab
	data unsafe.Pointer
}

type itab struct {
	inter  *interfacetype
	_type  *_type
	link   *itab
	hash   uint32 // copy of _type.hash. Used for type switches.
	bad    bool   // type does not implement interface
	inhash bool   // has this itab been added to hash?
	unused [2]byte
	fun    [1]uintptr // variable sized
}

iface 内部维护两个指针,tab 指向一个 itab 实体, 它表示接口的类型以及赋给这个接口的实体类型。data 则指向接口具体的值,一般而言是一个指向堆内存的指针。

car := Car{"宝马", 100}
var transporter Transporter
transporter = car

image.png

再来仔细看一下 itab 结构体:_type 字段描述了实体的类型,包括内存对齐方式,大小等;inter 字段描述了接口的类型。fun 字段放置和接口方法对应的具体数据类型的方法地址,实现接口调用方法的动态分派,一般在每次给接口赋值发生转换时会更新此表,或者直接拿缓存的 itab。

为什么 fun 数组的大小为 1,要是接口定义了多个方法可怎么办?

这里存储的是第一个方法的函数指针,如果有更多的方法,在它之后的内存空间里继续存储。从汇编角度来看,通过增加地址就能获取到这些函数指针,没什么影响。顺便提一句,这些方法是按照函数名称的字典序进行排列的。

再看一下 interfacetype 类型,它描述的是接口的类型:

type interfacetype struct {
	typ     _type
	pkgpath name
	mhdr    []imethod
}

可以看到,它包装了 _type 类型,_type 实际上是描述 Go 语言中各种数据类型的结构体。我们注意到,这里还包含一个 mhdr 字段,表示接口所定义的函数列表, pkgpath 记录定义了接口的包名。

这里通过一张图来看下 iface 结构体的全貌:

iface 结构体全景

接着来看一下 eface 的源码:

type eface struct {
    _type *_type
    data  unsafe.Pointer
}

相比 ifaceeface 就比较简单了。只维护了一个 _type 字段,表示空接口所承载的具体的实体类型。data 描述了具体的值。

eface 结构体全景

我们来看个例子:

func main() {
	x := 200
	var any interface{} = x
	fmt.Println(any)

	g := Gopher{"Go"}
	var c coder = g
	fmt.Println(c)
}

type coder interface {
	code()
	debug()
}

type Gopher struct {
	language string
}

func (p Gopher) code() {
	fmt.Printf("I am coding %s language\n", p.language)
}

func (p Gopher) debug() {
	fmt.Printf("I am debuging %s language\n", p.language)
}

执行命令,打印出汇编语言:

go tool compile -S ./src/main.go

可以看到,main 函数里调用了两个函数:

func convT2E64(t *_type, elem unsafe.Pointer) (e eface)
func convT2I(tab *itab, elem unsafe.Pointer) (i iface)

上面两个函数的参数和 iface 及 eface 结构体的字段是可以联系起来的:两个函数都是将参数组装一下,形成最终的接口。

作为补充,我们最后再来看下 _type 结构体:

type _type struct {
    // 类型大小
    size       uintptr
    ptrdata    uintptr
    // 类型的 hash 值
    hash       uint32
    // 类型的 flag,和反射相关
    tflag      tflag
    // 内存对齐相关
    align      uint8
    fieldalign uint8
    // 类型的编号,有bool, slice, struct 等等等等
    kind       uint8
    alg        *typeAlg
    // gc 相关
    gcdata    *byte
    str       nameOff
    ptrToThis typeOff
}

Go 语言各种数据类型都是在 _type 字段的基础上,增加一些额外的字段来进行管理的:

type arraytype struct {
	typ   _type
	elem  *_type
	slice *_type
	len   uintptr
}

type chantype struct {
	typ  _type
	elem *_type
	dir  uintptr
}

type slicetype struct {
	typ  _type
	elem *_type
}

type structtype struct {
	typ     _type
	pkgPath name
	fields  []structfield
}

这些数据类型的结构体定义,是反射实现的基础。

4. 接口的动态类型和动态值

从源码里可以看到:iface包含两个字段:tab 是接口指针,指向类型信息;data 是数据指针,则指向具体的数据。它们分别被称为动态类型动态值。而接口值包括动态类型动态值

【引申1】接口类型和 nil 作比较

接口值的零值是指动态类型动态值都为 nil。当仅且当这两部分的值都为 nil 的情况下,这个接口值就才会被认为 接口值 == nil

来看个例子:

type Coder interface {
	code()
}

type Gopher struct {
	name string
}

func (g Gopher) code() {
	fmt.Printf("%s is coding\n", g.name)
}

func main() {
	var c Coder
	fmt.Println(c == nil)
	fmt.Printf("c: %T, %v\n", c, c)

	var g *Gopher
	fmt.Println(g == nil)

	c = g
	fmt.Println(c == nil)
	fmt.Printf("c: %T, %v\n", c, c)
}

输出:

true
c: <nil>, <nil>
true
false
c: *main.Gopher, <nil>

一开始,c 的 动态类型和动态值都为 nilg 也为 nil,当把 g 赋值给 c 后,c 的动态类型变成了 *main.Gopher,仅管 c 的动态值仍为 nil,但是当 c 和 nil 作比较的时候,结果就是 false 了。

【引申2】 来看一个例子,看一下它的输出:

type MyError struct {}

func (i MyError) Error() string {
	return "MyError"
}

func main() {
	err := Process()
	fmt.Println(err)

	fmt.Println(err == nil)
}

func Process() error {
	var err *MyError = nil
	return err
}

函数运行结果:

<nil>
false

这里先定义了一个 MyError 结构体,实现了 Error 函数,也就实现了 error 接口。Process 函数返回了一个 error 接口,这块隐含了类型转换。所以,虽然它的值是 nil,其实它的类型是 *MyError,最后和 nil 比较的时候,结果为 false

【引申3】如何打印出接口的动态类型和值?

直接看代码:

type iface struct {
	itab, data uintptr
}

func main() {
	var a interface{} = nil

	var b interface{} = (*int)(nil)

	x := 5
	var c interface{} = (*int)(&x)
	
	ia := *(*iface)(unsafe.Pointer(&a))
	ib := *(*iface)(unsafe.Pointer(&b))
	ic := *(*iface)(unsafe.Pointer(&c))

	fmt.Println(ia, ib, ic)

	fmt.Println(*(*int)(unsafe.Pointer(ic.data)))
}

代码里直接定义了一个 iface 结构体,用两个指针来描述 itab 和 data,之后将 a, b, c 在内存中的内容强制解释成我们自定义的 iface。最后就可以打印出动态类型和动态值的地址。

运行结果如下:

{0 0} {17426912 0} {17426912 842350714568}
5

a 的动态类型和动态值的地址均为 0,也就是 nil;b 的动态类型和 c 的动态类型一致,都是 *int;最后,c 的动态值为 5。

5. 编译器自动检测类型是否实现接口

经常看到一些开源库里会有一些类似下面这种奇怪的用法:

var _ io.Writer = (*myWriter)(nil)

这时候会有点懵,不知道作者想要干什么,实际上这就是此问题的答案。编译器会由此检查 *myWriter 类型是否实现了 io.Writer 接口。

来看一个例子:

type myWriter struct {

}

/*func (w myWriter) Write(p []byte) (n int, err error) {
	return
}*/

func main() {
    // 检查 *myWriter 类型是否实现了 io.Writer 接口
    var _ io.Writer = (*myWriter)(nil)

    // 检查 myWriter 类型是否实现了 io.Writer 接口
    var _ io.Writer = myWriter{}
}

解除注释后,运行程序不报错。

实际上,上述赋值语句会发生隐式地类型转换,在转换的过程中,编译器会检测等号右边的类型是否实现了等号左边接口所规定的函数。

6. 接口的构造过程是怎样的

我们已经看过了 iface 和 eface 的源码,知道 iface 最重要的是 itab 和 _type

为了研究清楚接口是如何构造的,接下来我会拿起汇编的武器,还原背后的真相。

来看一个示例代码:

type Person interface {
	growUp()
}

type Student struct {
	age int
}

func (p Student) growUp() {
	p.age += 1
	return
}

func main() {
	var qcrao = Person(Student{age: 18})

	fmt.Println(qcrao)
}

执行命令:

go tool compile -S main.go

得到 main 函数的汇编代码如下:

0x0000 00000 (./src/main.go:30) TEXT    "".main(SB), $80-0
0x0000 00000 (./src/main.go:30) MOVQ    (TLS), CX
0x0009 00009 (./src/main.go:30) CMPQ    SP, 16(CX)
0x000d 00013 (./src/main.go:30) JLS     157
0x0013 00019 (./src/main.go:30) SUBQ    $80, SP
0x0017 00023 (./src/main.go:30) MOVQ    BP, 72(SP)
0x001c 00028 (./src/main.go:30) LEAQ    72(SP), BP
0x0021 00033 (./src/main.go:30) FUNCDATA$0, gclocals·69c1753bd5f81501d95132d08af04464(SB)
0x0021 00033 (./src/main.go:30) FUNCDATA$1, gclocals·e226d4ae4a7cad8835311c6a4683c14f(SB)
0x0021 00033 (./src/main.go:31) MOVQ    $18, ""..autotmp_1+48(SP) // 第十行
0x002a 00042 (./src/main.go:31) LEAQ    go.itab."".Student,"".Person(SB), AX
0x0031 00049 (./src/main.go:31) MOVQ    AX, (SP)
0x0035 00053 (./src/main.go:31) LEAQ    ""..autotmp_1+48(SP), AX
0x003a 00058 (./src/main.go:31) MOVQ    AX, 8(SP)
0x003f 00063 (./src/main.go:31) PCDATA  $0, $0
0x003f 00063 (./src/main.go:31) CALL    runtime.convT2I64(SB)
0x0044 00068 (./src/main.go:31) MOVQ    24(SP), AX
0x0049 00073 (./src/main.go:31) MOVQ    16(SP), CX
0x004e 00078 (./src/main.go:33) TESTQ   CX, CX
0x0051 00081 (./src/main.go:33) JEQ     87
0x0053 00083 (./src/main.go:33) MOVQ    8(CX), CX
0x0057 00087 (./src/main.go:33) MOVQ    $0, ""..autotmp_2+56(SP)
0x0060 00096 (./src/main.go:33) MOVQ    $0, ""..autotmp_2+64(SP)
0x0069 00105 (./src/main.go:33) MOVQ    CX, ""..autotmp_2+56(SP)
0x006e 00110 (./src/main.go:33) MOVQ    AX, ""..autotmp_2+64(SP)
0x0073 00115 (./src/main.go:33) LEAQ    ""..autotmp_2+56(SP), AX
0x0078 00120 (./src/main.go:33) MOVQ    AX, (SP)
0x007c 00124 (./src/main.go:33) MOVQ    $1, 8(SP)
0x0085 00133 (./src/main.go:33) MOVQ    $1, 16(SP)
0x008e 00142 (./src/main.go:33) PCDATA  $0, $1
0x008e 00142 (./src/main.go:33) CALL    fmt.Println(SB)
0x0093 00147 (./src/main.go:34) MOVQ    72(SP), BP
0x0098 00152 (./src/main.go:34) ADDQ    $80, SP
0x009c 00156 (./src/main.go:34) RET
0x009d 00157 (./src/main.go:34) NOP
0x009d 00157 (./src/main.go:30) PCDATA  $0, $-1
0x009d 00157 (./src/main.go:30) CALL    runtime.morestack_noctxt(SB)
0x00a2 00162 (./src/main.go:30) JMP     0

我们从第 10 行开始看:构造调用 runtime.convT2I64(SB) 的参数

image.png

我们来看下这个函数的参数形式:

func convT2I64(tab *itab, elem unsafe.Pointer) (i iface) {
	// ……
}

convT2I64 会构造出一个 inteface,也就是我们的 Person 接口。

第一个参数的位置是 (SP),这里被赋上了 go.itab."".Student,"".Person(SB) 的地址。

我们从生成的汇编找到:

go.itab."".Student,"".Person SNOPTRDATA dupok size=40
        0x0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  
        0x0010 00 00 00 00 00 00 00 00 da 9f 20 d4              
        rel 0+8 t=1 type."".Person+0
        rel 8+8 t=1 type."".Student+0

size=40 大小为40字节,回顾一下:

type itab struct {
	inter  *interfacetype // 8字节
	_type  *_type // 8字节
	link   *itab // 8字节
	hash   uint32 // 4字节
	bad    bool   // 1字节
	inhash bool   // 1字节
	unused [2]byte // 2字节
	fun    [1]uintptr // variable sized // 8字节
}

把每个字段的大小相加,itab 结构体的大小就是 40 字节。上面那一串数字实际上是 itab 序列化后的内容,注意到大部分数字是 0,从 24 字节开始的 4 个字节 da 9f 20 d4 实际上是 itab 的 hash 值,这在判断两个类型是否相同的时候会用到。

下面两行是链接指令,简单说就是将所有源文件综合起来,给每个符号赋予一个全局的位置值。这里的意思也比较明确:前8个字节最终存储的是 type."".Person 的地址,对应 itab 里的 inter 字段,表示接口类型;8-16 字节最终存储的是 type."".Student 的地址,对应 itab 里 _type 字段,表示具体类型。

汇编行数操作
16调用 runtime.convT2I64(SB)

具体看下代码:

func convT2I64(tab *itab, elem unsafe.Pointer) (i iface) {
	t := tab._type
	
	//...
	
	var x unsafe.Pointer
	if *(*uint64)(elem) == 0 {
		x = unsafe.Pointer(&zeroVal[0])
	} else {
		x = mallocgc(8, t, false)
		*(*uint64)(x) = *(*uint64)(elem)
	}
	i.tab = tab
	i.data = x
	return
}

这块代码比较简单,把 tab 赋给了 iface 的 tab 字段;data 部分则是在堆上申请了一块内存,然后将 elem 指向的 18 拷贝过去。这样 iface 就组装好了。

image.png

汇编行数操作
17把 i.data 赋给 AX
18把 i.tab 赋给 CX
19-21检测 i.tab 是否是 nil,如果不是的话,把 CX 移动 8 个字节,也就是把 itab 的 _type 字段赋给了 CX,这也是接口的实体类型,最终要作为 fmt.Println 函数的参数

后面,就是调用 fmt.Println 函数及之前的参数准备工作了,不再赘述。

这样,我们就把一个 interface 的构造过程说完了。

【引申1】 如何打印出接口类型的 Hash 值?

type iface struct {
	tab  *itab
	data unsafe.Pointer
}
type itab struct {
	inter uintptr
	_type uintptr
	link uintptr
	hash  uint32
	_     [4]byte
	fun   [1]uintptr
}

func main() {
	var qcrao = Person(Student{age: 18})

	iface := (*iface)(unsafe.Pointer(&qcrao))
	fmt.Printf("iface.tab.hash = %#x\n", iface.tab.hash)
}

定义了一个山寨版的 iface 和 itab,说它山寨是因为 itab 里的一些关键数据结构都不具体展开了,比如 _type,对比一下正宗的定义就可以发现,但是山寨版依然能工作,因为 _type 就是一个指针而已嘛。

在 main 函数里,先构造出一个接口对象 qcrao,然后强制类型转换,最后读取出 hash 值,非常妙!你也可以自己动手试一下。

运行结果:

iface.tab.hash = 0xd4209fda

值得一提的是,构造接口 qcrao 的时候,即使我把 age 写成其他值,得到的 hash 值依然不变的,这应该是可以预料的,hash 值只和他的字段、方法相关。

7. Println

 fmt.Println 函数的参数是 interface。对于内置类型,函数内部会用穷举法,得出它的真实类型,然后转换为字符串打印。而对于自定义类型,首先确定该类型是否实现了 String() 方法,如果实现了,则直接打印输出 String() 方法的结果;否则,会通过反射来遍历对象的成员进行打印。

8. 接口转换的原理

通过前面提到的 iface 的源码可以看到,实际上它包含接口的类型 interfacetype 和 实体类型的类型 _type,这两者都是 iface 的字段 itab 的成员。也就是说生成一个 itab 同时需要接口的类型和实体的类型。

<interface 类型, 实体类型> ->itable

当判定一种类型是否满足某个接口时,Go 使用类型的方法集和接口所需要的方法集进行匹配,如果类型的方法集完全包含接口的方法集,则可认为该类型实现了该接口。

例如某类型有 m 个方法,某接口有 n 个方法,则很容易知道这种判定的时间复杂度为 O(mn),Go 会对方法集的函数按照函数名的字典序进行排序,所以实际的时间复杂度为 O(m+n)

这里我们来探索将一个接口转换给另外一个接口背后的原理,当然,能转换的原因必然是类型兼容。

直接来看一个例子:

type coder interface {
	code()
	run()
}

type runner interface {
	run()
}

type Gopher struct {
	language string
}

func (g Gopher) code() {
	return
}

func (g Gopher) run() {
	return
}

func main() {
	var c coder = Gopher{}

	var r runner
	r = c
	fmt.Println(c, r)
}

简单解释下上述代码:定义了两个 interfacecoder 和 runner。定义了一个实体类型 Gopher,类型 Gopher 实现了两个方法,分别是 run() 和 code()。main 函数里定义了一个接口变量 c,绑定了一个 Gopher 对象,之后将 c 赋值给另外一个接口变量 r 。赋值成功的原因是 c 中包含 run() 方法。这样,两个接口变量完成了转换。

执行命令:

go tool compile -S main.go

得到 main 函数的汇编命令,可以看到: r = c 这一行语句实际上是调用了 runtime.convI2I(SB),也就是 convI2I 函数,从函数名来看,就是将一个 interface 转换成另外一个 interface,看下它的源代码:

func convI2I(inter *interfacetype, i iface) (r iface) {
	tab := i.tab
	if tab == nil {
		return
	}
	if tab.inter == inter {
		r.tab = tab
		r.data = i.data
		return
	}
	r.tab = getitab(inter, tab._type, false)
	r.data = i.data
	return
}

代码比较简单,函数参数 inter 表示接口类型,i 表示绑定了实体类型的接口,r 则表示接口转换了之后的新的 iface。通过前面的分析,我们又知道, iface 是由 tab 和 data 两个字段组成。所以,实际上 convI2I 函数真正要做的事,找到新 interface 的 tab 和 data,就大功告成了。

我们还知道,tab 是由接口类型 interfacetype 和 实体类型 _type 组成。所以最关键的语句是 r.tab = getitab(inter, tab._type, false)

因此,重点来看下 getitab 函数的源码,只看关键的地方:

func getitab(inter *interfacetype, typ *_type, canfail bool) *itab {
	// ……

    // 根据 inter, typ 计算出 hash 值
	h := itabhash(inter, typ)

	var m *itab
	var locked int
	for locked = 0; locked < 2; locked++ {
		if locked != 0 {
			lock(&ifaceLock)
        }
        
        // 遍历哈希表的一个 slot
		for m = (*itab)(atomic.Loadp(unsafe.Pointer(&hash[h]))); m != nil; m = m.link {

            // 如果在 hash 表中已经找到了 itab(inter 和 typ 指针都相同)
			if m.inter == inter && m._type == typ {
                // ……
                
				if locked != 0 {
					unlock(&ifaceLock)
				}
				return m
			}
		}
	}

    // 在 hash 表中没有找到 itab,那么新生成一个 itab
	m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.mhdr)-1)*sys.PtrSize, 0, &memstats.other_sys))
	m.inter = inter
    m._type = typ
    
    // 添加到全局的 hash 表中
	additab(m, true, canfail)
	unlock(&ifaceLock)
	if m.bad {
		return nil
	}
	return m
}

简单总结一下:getitab 函数会根据 interfacetype 和 _type 去全局的 itab 哈希表中查找,如果能找到,则直接返回;否则,会根据给定的 interfacetype 和 _type 新生成一个 itab,并插入到 itab 哈希表,这样下一次就可以直接拿到 itab

这里查找了两次,并且第二次上锁了,这是因为如果第一次没找到,在第二次仍然没有找到相应的 itab 的情况下,需要新生成一个,并且写入哈希表,因此需要加锁。这样,其他协程在查找相同的 itab 并且也没有找到时,第二次查找时,会被挂住,之后,就会查到第一个协程写入哈希表的 itab

再来看一下 additab 函数的代码:

// 检查 _type 是否符合 interface_type 并且创建对应的 itab 结构体 将其放到 hash 表中
func additab(m *itab, locked, canfail bool) {
	inter := m.inter
	typ := m._type
	x := typ.uncommon()

	// both inter and typ have method sorted by name,
	// and interface names are unique,
	// so can iterate over both in lock step;
    // the loop is O(ni+nt) not O(ni*nt).
    // 
    // inter 和 typ 的方法都按方法名称进行了排序
    // 并且方法名都是唯一的。所以循环的次数是固定的
    // 只用循环 O(ni+nt),而非 O(ni*nt)
	ni := len(inter.mhdr)
	nt := int(x.mcount)
	xmhdr := (*[1 << 16]method)(add(unsafe.Pointer(x), uintptr(x.moff)))[:nt:nt]
	j := 0
	for k := 0; k < ni; k++ {
		i := &inter.mhdr[k]
		itype := inter.typ.typeOff(i.ityp)
		name := inter.typ.nameOff(i.name)
		iname := name.name()
		ipkg := name.pkgPath()
		if ipkg == "" {
			ipkg = inter.pkgpath.name()
		}
		for ; j < nt; j++ {
			t := &xmhdr[j]
            tname := typ.nameOff(t.name)
            // 检查方法名字是否一致
			if typ.typeOff(t.mtyp) == itype && tname.name() == iname {
				pkgPath := tname.pkgPath()
				if pkgPath == "" {
					pkgPath = typ.nameOff(x.pkgpath).name()
				}
				if tname.isExported() || pkgPath == ipkg {
					if m != nil {
                        // 获取函数地址,并加入到itab.fun数组中
						ifn := typ.textOff(t.ifn)
						*(*unsafe.Pointer)(add(unsafe.Pointer(&m.fun[0]), uintptr(k)*sys.PtrSize)) = ifn
					}
					goto nextimethod
				}
			}
		}
        // ……
        
		m.bad = true
		break
	nextimethod:
	}
	if !locked {
		throw("invalid itab locking")
    }

    // 计算 hash 值
    h := itabhash(inter, typ)
    // 加到Hash Slot链表中
	m.link = hash[h]
	m.inhash = true
	atomicstorep(unsafe.Pointer(&hash[h]), unsafe.Pointer(m))
}

additab 会检查 itab 持有的 interfacetype 和 _type 是否符合,就是看 _type 是否完全实现了 interfacetype 的方法,也就是看两者的方法列表重叠的部分就是 interfacetype 所持有的方法列表。注意到其中有一个双层循环,乍一看,循环次数是 ni * nt,但由于两者的函数列表都按照函数名称进行了排序,因此最终只执行了 ni + nt 次,代码里通过一个小技巧来实现:第二层循环并没有从 0 开始计数,而是从上一次遍历到的位置开始。

求 hash 值的函数比较简单:

func itabhash(inter *interfacetype, typ *_type) uint32 {
	h := inter.typ.hash
	h += 17 * typ.hash
	return h % hashSize
}

hashSize 的值是 1009。

更一般的,当把实体类型赋值给接口的时候,会调用 conv 系列函数,例如空接口调用 convT2E 系列、非空接口调用 convT2I 系列。这些函数比较相似:

  1. 具体类型转空接口时,_type 字段直接复制源类型的 _type;调用 mallocgc 获得一块新内存,把值复制进去,data 再指向这块新内存。
  2. 具体类型转非空接口时,入参 tab 是编译器在编译阶段预先生成好的,新接口 tab 字段直接指向入参 tab 指向的 itab;调用 mallocgc 获得一块新内存,把值复制进去,data 再指向这块新内存。
  3. 而对于接口转接口,itab 调用 getitab 函数获取。只用生成一次,之后直接从 hash 表中获取。

 本文为转载内容,转自 饶全成老师的《# 深度解密 Go 语言之关于 interface 的 10 个问题》,进行了部分修改与增加  
原文链接:<qcrao.com/post/dive-i…