题目一:
思路
本题相对于昨天的动态规划:300.最长递增子序列 (opens new window)最大的区别在于“连续”。
本题要求的是最长连续递增序列
#动态规划
动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i]:以下标i为结尾的数组的连续递增的子序列长度为dp[i] 。
注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。
- 确定递推公式
如果 nums[i + 1] > nums[i],那么以 i+1 为结尾的数组的连续递增的子序列长度 一定等于 以i为结尾的数组的连续递增的子序列长度 + 1 。
即:dp[i + 1] = dp[i] + 1;
注意这里就体现出和动态规划:300.最长递增子序列 (opens new window)的区别!
因为本题要求连续递增子序列,所以就必要比较nums[i + 1]与nums[i],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。
既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i + 1] 和 nums[i]。
这里大家要好好体会一下!
- dp数组如何初始化
以下标i为结尾的数组的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。
所以dp[i]应该初始1;
- 确定遍历顺序
从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。
本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:
for (let i = 0; i < nums.length - 1; i++) {
if (nums[i + 1] > nums[i]) { // 连续记录
dp[i + 1] = dp[i] + 1; // 递推公式
}
}
- 举例推导dp数组
已输入nums = [1,3,5,4,7]为例,dp数组状态如下:
注意这里要取dp[i]里的最大值,所以dp[2]才是结果!
以上分析完毕,JS代码如下:
var findLengthOfLCIS = function(nums) {
let dp = new Array(nums.length).fill(1)
let result = 1
for (let i = 0; i < nums.length - 1; i++) {
if (nums[i] < nums[i + 1]) {
dp[i + 1] = dp[i] + 1
}
if (dp[i + 1] > result) {
result = dp[i + 1]
}
}
return result
};
- 时间复杂度:O(n)
- 空间复杂度:O(n)
#贪心
这道题目也可以用贪心来做,也就是遇到nums[i + 1] > nums[i]的情况,count就++,否则count为1,记录count的最大值就可以了。
代码如下:
const findLengthOfLCIS = nums => {
if (nums.length == 0) return 0;
int result = 1; // 连续子序列最少也是1
int count = 1;
for (let i = 0; i < nums.length - 1; i++) {
if (nums[i + 1] > nums[i]) { // 连续记录
count++;
} else { // 不连续,count从头开始
count = 1;
}
if (count > result) result = count;
}
return result;
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1)
#总结
本题也是动规里子序列问题的经典题目,但也可以用贪心来做,大家也会发现贪心好像更简单一点,而且空间复杂度仅是O(1)。
在动规分析中,关键是要理解和动态规划:300.最长递增子序列 (opens new window)的区别。
要联动起来,才能理解递增子序列怎么求,递增连续子序列又要怎么求。
概括来说:不连续递增子序列的跟前0-i 个状态有关,连续递增的子序列只跟前一个状态有关
本篇我也把区别所在之处重点介绍了,关键在递推公式和遍历方法上,大家可以仔细体会一波!