Redis笔记

219 阅读37分钟

一、Nosql概述

为什么使用Nosql

1、单机Mysql时代

image.png

90年代,一个网站的访问量一般不会太大,单个数据库完全够用。随着用户增多,网站出现以下问题

  1. 数据量增加到一定程度,单机数据库就放不下了
  2. 数据的索引(B+ Tree),一个机器内存也存放不下
  3. 访问量变大后(读写混合),一台服务器承受不住。

2、Memcached(缓存) + Mysql + 垂直拆分(读写分离)

网站80%的情况都是在读,每次都要去查询数据库的话就十分的麻烦!所以说我们希望减轻数据库的压力,我们可以使用缓存来保证效率!

image.png

优化过程经历了以下几个过程:

  1. 优化数据库的数据结构和索引(难度大)
  2. 文件缓存,通过IO流获取比每次都访问数据库效率略高,但是流量爆炸式增长时候,IO流也承受不了
  3. MemCache,当时最热门的技术,通过在数据库和数据库访问层之间加上一层缓存,第一次访问时查询数据库,将结果保存到缓存,后续的查询先检查缓存,若有直接拿去使用,效率显著提升.

3、分库分表 + 水平拆分 + Mysql集群

image.png

4、为什么要用NoSQL ?

​ 如今信息量井喷式增长,各种各样的数据出现(用户定位数据,图片数据等),大数据的背景下关系型数据库(RDBMS)无法满足大量数据要求。Nosql数据库就能轻松解决这些问题。

用户的个人信息,社交网络,地理位置。用户自己产生的数据,用户日志等等爆发式增长! 这时候我们就需要使用NoSQL数据库的,Nosql可以很好的处理以上的情况!

什么是Nosql

NoSQL=NotOnlySQL(不仅仅是SQL\color{green}{NoSQL = Not Only SQL(不仅仅是SQL)}

Not Only Structured Query Language

关系型数据库:列+行,同一个表下数据的结构是一样的。

非关系型数据库:数据存储没有固定的格式,并且可以进行横向扩展。

NoSQL泛指非关系型数据库,随着web2.0互联网的诞生,传统的关系型数据库很难对付web2.0时代!尤其是超大规模的高并发的社区,暴露出来很多难以克服的问题,NoSQL在当今大数据环境下发展的十分迅速,Redis是发展最快的。

二、Redis入门

概述

Redis是什么?

Redis(Remote Dictionary Server ),即远程字典服务。

是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。

与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。

Redis能该干什么?

  1. 内存存储、持久化,内存是断电即失的,所以需要持久化(RDB、AOF)
  2. 高效率、用于高速缓冲
  3. 发布订阅系统
  4. 地图信息分析
  5. 计时器、计数器(eg:浏览量)
  6. 。。。

特性

  1. 多样的数据类型
  2. 持久化
  3. 集群
  4. 事务

环境搭建

官网:redis.io/

推荐使用Linux服务器学习。

windows版本的Redis已经停更很久了…

Linux安装

image.png

  1. 下载安装包!redis-7.0.5.tar.gz

  2. 解压Redis的安装包!程序一般放在 /opt 目录下

image.png

[]((70条消息) 解决YUM下Loaded plugins: fastestmirror Determining fastest mirrors 的问题 和Could not retrieve mirrorlist_永远IT菜鸟的博客-CSDN博客)

3.基本环境安装

1. yum install gcc-c++ (因为redis是C语言开发的,所以要安装redis自然需要安装gcc)
2.  然后进入redis目录下执行 make 
3.  然后执行 make install

image.png 4.redis默认安装路径 /usr/local/bin

image.png 5.将redis的配置文件复制到 程序安装目录 /usr/local/bin/自己的文件夹

image.png

  1. redis默认不是后台启动的,需要修改配置文件!

image.png

7.通过制定的配置文件启动redis服务

image.png

8.使用redis-cli连接指定的端口号测试,Redis的默认端口6379

image.png

9.关闭Redis服务 shutdown

image.png

  1. 再次查看进程是否存在

image.png

测试性能

redis-benchmark:Redis官方提供的性能测试工具,参数选项如下:

image.png

简单测试:

# 测试:100个并发连接 100000请求
redis-benchmark -h localhost -p 6379 -c 100 -n 100000

image.png

image.png

基础知识

redis默认有16个数据库

image.png 默认使用的第0个;

16个数据库为:DB 0~DB 15
默认使用DB 0 ,可以使用select n切换到DB n,dbsize可以查看当前数据库的大小,与key数量相关。

127.0.0.1:6379> config get databases # 命令行查看数据库数量databases
1) "databases"
2) "16"

127.0.0.1:6379> select 8 # 切换数据库 DB 8
OK
127.0.0.1:6379[8]> dbsize # 查看数据库大小
(integer) 0

# 不同数据库之间 数据是不能互通的,并且dbsize 是根据库中key的个数。
127.0.0.1:6379> set name sakura 
OK
127.0.0.1:6379> SELECT 8
OK
127.0.0.1:6379[8]> get name # db8中并不能获取db0中的键值对。
(nil)
127.0.0.1:6379[8]> DBSIZE
(integer) 0
127.0.0.1:6379[8]> SELECT 0
OK
127.0.0.1:6379> keys *
1) "counter:__rand_int__"
2) "mylist"
3) "name"
4) "key:__rand_int__"
5) "myset:__rand_int__"
127.0.0.1:6379> DBSIZE # size和key个数相关
(integer) 5

keys * :查看当前数据库中所有的key。

flushdb:清空当前数据库中的键值对。

flushall:清空所有数据库的键值对。

Redis是单线程的,Redis是基于内存操作的。

所以Redis的性能瓶颈不是CPU,而是机器内存和网络带宽。
那么为什么Redis的速度如此快呢,性能这么高呢?QPS达到10W+

Redis为什么单线程还这么快?

  • 误区1:高性能的服务器一定是多线程的?
  • 误区2:多线程(CPU上下文会切换!)一定比单线程效率高!

核心:Redis是将所有的数据放在内存中的,所以说使用单线程去操作效率就是最高的,多线程(CPU上下文会切换:耗时的操作!),对于内存系统来说,如果没有上下文切换效率就是最高的,多次读写都是在一个CPU上的\color{red}{对于内存系统来说,如果没有上下文切换效率就是最高的,多次读写都是在一个CPU上的},在内存存储数据情况下,单线程就是最佳的方案。

三、五大数据类型

Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库,高速缓存和消息队列代理。它支持字符串、哈希表、列表、集合、有序集合,位图,hyperloglogs等数据类型。内置复制、Lua脚本、LRU收回、事务以及不同级别磁盘持久化功能,同时通过Redis Sentinel提供高可用,通过Redis Cluster提供自动分区。

Redis-key

在redis中无论什么数据类型,在数据库中都是以key-value形式保存,通过进行对Redis-key的操作,来完成对数据库中数据的操作。 下面学习的命令:

  • exists key:判断键是否存在
  • del key:删除键值对
  • move key db:将键值对移动到指定数据库
  • expire key second:设置键值对的过期时间
  • type key:查看value的数据类型
127.0.0.1:6379> keys * # 查看当前数据库所有key
(empty list or set)
127.0.0.1:6379> set name qinjiang # set key
OK
127.0.0.1:6379> set age 20
OK
127.0.0.1:6379> keys *
1) "age"
2) "name"
127.0.0.1:6379> move age 1 # 将键值对移动到指定数据库
(integer) 1
127.0.0.1:6379> EXISTS age # 判断键是否存在
(integer) 0 # 不存在
127.0.0.1:6379> EXISTS name
(integer) 1 # 存在
127.0.0.1:6379> SELECT 1
OK
127.0.0.1:6379[1]> keys *
1) "age"
127.0.0.1:6379[1]> del age # 删除键值对
(integer) 1 # 删除个数


127.0.0.1:6379> set age 20
OK
127.0.0.1:6379> EXPIRE age 15 # 设置键值对的过期时间

(integer) 1 # 设置成功 开始计数
127.0.0.1:6379> ttl age # 查看key的过期剩余时间
(integer) 13
127.0.0.1:6379> ttl age
(integer) 11
127.0.0.1:6379> ttl age
(integer) 9
127.0.0.1:6379> ttl age
(integer) -2 # -2 表示key过期,-1表示key未设置过期时间

127.0.0.1:6379> get age # 过期的key 会被自动delete
(nil)
127.0.0.1:6379> keys *
1) "name"

127.0.0.1:6379> type name # 查看value的数据类型
string

关于TTL命令 Redis的key,通过TTL命令返回key的过期时间,一般来说有3种:

  1. 当前key没有设置过期时间,所以会返回-1.
  2. 当前key有设置过期时间,而且key已经过期,所以会返回-2.
  3. 当前key有设置过期时间,且key还没有过期,故会返回key的正常剩余时间.

关于重命名RENAMERENAMENX

RENAME key newkey修改 key 的名称
RENAMENX key newkey仅当 newkey 不存在时,将 key 改名为 newkey 。
更多命令学习:www.redis.net.cn/order/

String(字符串)

普通的set、get直接略过。

命令描述示例
APPEND key value 向指定的key的value后追加字符串127.0.0.1:6379> set msg hello OK 127.0.0.1:6379> append msg " world" (integer) 11 127.0.0.1:6379> get msg “hello world”
DECR/INCR key将指定key的value数值进行+1/-1(仅对于数字)127.0.0.1:6379> set age 20 OK 127.0.0.1:6379> incr age (integer) 21 127.0.0.1:6379> decr age (integer) 20
INCRBY/DECRBY key n按指定的步长对数值进行加减127.0.0.1:6379> INCRBY age 5 (integer) 25 127.0.0.1:6379> DECRBY age 10 (integer) 15
INCRBYFLOAT key n为数值加上浮点型数值127.0.0.1:6379> INCRBYFLOAT age 5.2 “20.2”
STRLEN key获取key保存值的字符串长度127.0.0.1:6379> get msg “hello world” 127.0.0.1:6379> STRLEN msg (integer) 11
GETRANGE key start end按起止位置获取字符串(闭区间,起止位置都取)127.0.0.1:6379> get msg “hello world” 127.0.0.1:6379> GETRANGE msg 3 9 “lo worl”
SETRANGE key offset value用指定的value 替换key中 offset开始的值127.0.0.1:6379> SETRANGE msg 2 hello (integer) 7 127.0.0.1:6379> get msg “tehello”
GETSET key value将给定 key 的值设为 value ,并返回 key 的旧值(old value)。127.0.0.1:6379> GETSET msg test “hello world”
SETNX key value仅当key不存在时进行set127.0.0.1:6379> SETNX msg test (integer) 0 127.0.0.1:6379> SETNX name sakura (integer) 1
SETEX key seconds valueset 键值对并设置过期时间127.0.0.1:6379> setex name 10 root OK 127.0.0.1:6379> get name (nil)
MSET key1 value1 [key2 value2..]批量set键值对127.0.0.1:6379> MSET k1 v1 k2 v2 k3 v3 OK
MSETNX key1 value1 [key2 value2..]批量设置键值对,仅当参数中所有的key都不存在时执行127.0.0.1:6379> MSETNX k1 v1 k4 v4 (integer) 0
MGET key1 [key2..]批量获取多个key保存的值127.0.0.1:6379> MGET k1 k2 k3 1) “v1” 2) “v2” 3) “v3”
PSETEX key milliseconds value和 SETEX 命令相似,但它以毫秒为单位设置 key 的生存时间,
getset key value如果不存在值,则返回nil,如果存在值,获取原来的值,并设置新的值
String类似的使用场景:value除了是字符串还可以是数字,用途举例:
  • 计数器
  • 统计多单位的数量:uid:123666:follow 0
  • 粉丝数
  • 对象存储缓存

List(列表)

Redis列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边) 一个列表最多可以包含 232 - 1 个元素 (4294967295, 每个列表超过40亿个元素)。

首先我们列表,可以经过规则定义将其变为队列、栈、双端队列等

image.png

正如图Redis中List是可以进行双端操作的,所以命令也就分为了LXXX和RLLL两类,有时候L也表示List例如LLEN

命令描述
LPUSH/RPUSH key value1[value2..]从左边/右边向列表中PUSH值(一个或者多个)。
LRANGE key start end获取list 起止元素==(索引从左往右 递增)==
LPUSHX/RPUSHX key value向已存在的列名中push值(一个或者多个)
LINSERT key BEFOREAFTER pivot value 在指定列表元素的前/后 插入value
LLEN key查看列表长度
LINDEX key index通过索引获取列表元素
LSET key index value通过索引为元素设值
LPOP/RPOP key从最左边/最右边移除值 并返回
RPOPLPUSH source destination将列表的尾部(右)最后一个值弹出,并返回,然后加到另一个列表的头部
LTRIM key start end通过下标截取指定范围内的列表
LREM key count valueList中是允许value重复的 count > 0:从头部开始搜索 然后删除指定的value 至多删除count个 count < 0:从尾部开始搜索… count = 0:删除列表中所有的指定value。
BLPOP/BRPOP key1[key2] timout移出并获取列表的第一个/最后一个元素, 如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止。
BRPOPLPUSH source destination timeoutRPOPLPUSH功能相同,如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止。
---------------------------LPUSH---RPUSH---LRANGE--------------------------------

127.0.0.1:6379> LPUSH mylist k1 # LPUSH mylist=>{1}
(integer) 1
127.0.0.1:6379> LPUSH mylist k2 # LPUSH mylist=>{2,1}
(integer) 2
127.0.0.1:6379> RPUSH mylist k3 # RPUSH mylist=>{2,1,3}
(integer) 3
127.0.0.1:6379> get mylist # 普通的get是无法获取list值的
(error) WRONGTYPE Operation against a key holding the wrong kind of value
127.0.0.1:6379> LRANGE mylist 0 4 # LRANGE 获取起止位置范围内的元素
1) "k2"
2) "k1"
3) "k3"
127.0.0.1:6379> LRANGE mylist 0 2
1) "k2"
2) "k1"
3) "k3"
127.0.0.1:6379> LRANGE mylist 0 1
1) "k2"
2) "k1"
127.0.0.1:6379> LRANGE mylist 0 -1 # 获取全部元素
1) "k2"
2) "k1"
3) "k3"

---------------------------LPUSHX---RPUSHX-----------------------------------

127.0.0.1:6379> LPUSHX list v1 # list不存在 LPUSHX失败
(integer) 0
127.0.0.1:6379> LPUSHX list v1 v2  
(integer) 0
127.0.0.1:6379> LPUSHX mylist k4 k5 # 向mylist中 左边 PUSH k4 k5
(integer) 5
127.0.0.1:6379> LRANGE mylist 0 -1
1) "k5"
2) "k4"
3) "k2"
4) "k1"
5) "k3"

---------------------------LINSERT--LLEN--LINDEX--LSET----------------------------

127.0.0.1:6379> LINSERT mylist after k2 ins_key1 # 在k2元素后 插入ins_key1
(integer) 6
127.0.0.1:6379> LRANGE mylist 0 -1
1) "k5"
2) "k4"
3) "k2"
4) "ins_key1"
5) "k1"
6) "k3"
127.0.0.1:6379> LLEN mylist # 查看mylist的长度
(integer) 6
127.0.0.1:6379> LINDEX mylist 3 # 获取下标为3的元素
"ins_key1"
127.0.0.1:6379> LINDEX mylist 0
"k5"
127.0.0.1:6379> LSET mylist 3 k6 # 将下标3的元素 set值为k6
OK
127.0.0.1:6379> LRANGE mylist 0 -1
1) "k5"
2) "k4"
3) "k2"
4) "k6"
5) "k1"
6) "k3"

---------------------------LPOP--RPOP--------------------------

127.0.0.1:6379> LPOP mylist # 左侧(头部)弹出
"k5"
127.0.0.1:6379> RPOP mylist # 右侧(尾部)弹出
"k3"

---------------------------RPOPLPUSH--------------------------

127.0.0.1:6379> LRANGE mylist 0 -1
1) "k4"
2) "k2"
3) "k6"
4) "k1"
127.0.0.1:6379> RPOPLPUSH mylist newlist # 将mylist的最后一个值(k1)弹出,加入到newlist的头部
"k1"
127.0.0.1:6379> LRANGE newlist 0 -1
1) "k1"
127.0.0.1:6379> LRANGE mylist 0 -1
1) "k4"
2) "k2"
3) "k6"

---------------------------LTRIM--------------------------

127.0.0.1:6379> LTRIM mylist 0 1 # 截取mylist中的 0~1部分
OK
127.0.0.1:6379> LRANGE mylist 0 -1
1) "k4"
2) "k2"

# 初始 mylist: k2,k2,k2,k2,k2,k2,k4,k2,k2,k2,k2
---------------------------LREM--------------------------

127.0.0.1:6379> LREM mylist 3 k2 # 从头部开始搜索 至多删除3个 k2
(integer) 3
# 删除后:mylist: k2,k2,k2,k4,k2,k2,k2,k2

127.0.0.1:6379> LREM mylist -2 k2 #从尾部开始搜索 至多删除2个 k2
(integer) 2
# 删除后:mylist: k2,k2,k2,k4,k2,k2


---------------------------BLPOP--BRPOP--------------------------

mylist: k2,k2,k2,k4,k2,k2
newlist: k1

127.0.0.1:6379> BLPOP newlist mylist 30 # 从newlist中弹出第一个值,mylist作为候选
1) "newlist" # 弹出
2) "k1"
127.0.0.1:6379> BLPOP newlist mylist 30
1) "mylist" # 由于newlist空了 从mylist中弹出
2) "k2"
127.0.0.1:6379> BLPOP newlist 30
(30.10s) # 超时了

127.0.0.1:6379> BLPOP newlist 30 # 我们连接另一个客户端向newlist中push了test, 阻塞被解决。
1) "newlist"
2) "test"
(12.54s)

小结

  • list实际上是一个链表,before Node after , left, right 都可以插入值
  • 如果key不存在,则创建新的链表
  • 如果key存在,新增内容
  • 如果移除了所有值,空链表,也代表不存在
  • 在两边插入或者改动值,效率最高!修改中间元素,效率相对较低

Set(集合)

Redis的Set是string类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。
Redis 中 集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是O(1)。
集合中最大的成员数为 232 - 1 (4294967295, 每个集合可存储40多亿个成员)。

命令描述
SADD key member1[member2..]向集合中无序增加一个/多个成员
SCARD key获取集合的成员数
SMEMBERS key返回集合中所有的成员
SISMEMBER key member查询member元素是否是集合的成员,结果是无序的
SRANDMEMBER key [count]随机返回集合中count个成员,count缺省值为1
SPOP key [count]随机移除并返回集合中count个成员,count缺省值为1
SMOVE source destination member将source集合的成员member移动到destination集合
SREM key member1[member2..]移除集合中一个/多个成员
SDIFF key1[key2..]返回所有集合的差集 key1- key2 - …
SDIFFSTORE destination key1[key2..]在SDIFF的基础上,将结果保存到集合中==(覆盖)==。不能保存到其他类型key噢!
SINTER key1 [key2..]返回所有集合的交集
SINTERSTORE destination key1[key2..]在SINTER的基础上,存储结果到集合中。覆盖
SUNION key1 [key2..]返回所有集合的并集
SUNIONSTORE destination key1 [key2..]在SUNION的基础上,存储结果到及和张。覆盖
SSCAN KEY [MATCH pattern] [COUNT count]在大量数据环境下,使用此命令遍历集合中元素,每次遍历部分
---------------SADD--SCARD--SMEMBERS--SISMEMBER--------------------

127.0.0.1:6379> SADD myset m1 m2 m3 m4 # 向myset中增加成员 m1~m4
(integer) 4
127.0.0.1:6379> SCARD myset # 获取集合的成员数目
(integer) 4
127.0.0.1:6379> smembers myset # 获取集合中所有成员
1) "m4"
2) "m3"
3) "m2"
4) "m1"
127.0.0.1:6379> SISMEMBER myset m5 # 查询m5是否是myset的成员
(integer) 0 # 不是,返回0
127.0.0.1:6379> SISMEMBER myset m2
(integer) 1 # 是,返回1
127.0.0.1:6379> SISMEMBER myset m3
(integer) 1

---------------------SRANDMEMBER--SPOP----------------------------------

127.0.0.1:6379> SRANDMEMBER myset 3 # 随机返回3个成员
1) "m2"
2) "m3"
3) "m4"
127.0.0.1:6379> SRANDMEMBER myset # 随机返回1个成员
"m3"
127.0.0.1:6379> SPOP myset 2 # 随机移除并返回2个成员
1) "m1"
2) "m4"
# 将set还原到{m1,m2,m3,m4}

---------------------SMOVE--SREM----------------------------------------

127.0.0.1:6379> SMOVE myset newset m3 # 将myset中m3成员移动到newset集合
(integer) 1
127.0.0.1:6379> SMEMBERS myset
1) "m4"
2) "m2"
3) "m1"
127.0.0.1:6379> SMEMBERS newset
1) "m3"
127.0.0.1:6379> SREM newset m3 # 从newset中移除m3元素
(integer) 1
127.0.0.1:6379> SMEMBERS newset
(empty list or set)

# 下面开始是多集合操作,多集合操作中若只有一个参数默认和自身进行运算
# setx=>{m1,m2,m4,m6}, sety=>{m2,m5,m6}, setz=>{m1,m3,m6}

-----------------------------SDIFF------------------------------------

127.0.0.1:6379> SDIFF setx sety setz # 等价于setx-sety-setz
1) "m4"
127.0.0.1:6379> SDIFF setx sety # setx - sety
1) "m4"
2) "m1"
127.0.0.1:6379> SDIFF sety setx # sety - setx
1) "m5"


-------------------------SINTER---------------------------------------
# 共同关注(交集)

127.0.0.1:6379> SINTER setx sety setz # 求 setx、sety、setx的交集
1) "m6"
127.0.0.1:6379> SINTER setx sety # 求setx sety的交集
1) "m2"
2) "m6"

-------------------------SUNION---------------------------------------

127.0.0.1:6379> SUNION setx sety setz # setx sety setz的并集
1) "m4"
2) "m6"
3) "m3"
4) "m2"
5) "m1"
6) "m5"
127.0.0.1:6379> SUNION setx sety # setx sety 并集
1) "m4"
2) "m6"
3) "m2"
4) "m1"
5) "m5"

Hash(哈希)

Redis hash 是一个string类型的field和value的映射表,*hash特别适合用于存储对象。

Set就是一种简化的Hash,只变动key,而value使用默认值填充。可以将一个Hash表作为一个对象进行存储,表中存放对象的信息。

命令描述
HSET key field value 将哈希表 key 中的字段 field 的值设为 value 。重复设置同一个field会覆盖,返回0
HMSET key field1 value1 [field2 value2..]同时将多个 field-value (域-值)对设置到哈希表 key 中。
HSETNX key field value只有在字段 field 不存在时,设置哈希表字段的值。
HEXISTS key field查看哈希表 key 中,指定的字段是否存在。
HGET key field value获取存储在哈希表中指定字段的值
HMGET key field1 [field2..]获取所有给定字段的值
HGETALL key获取在哈希表key 的所有字段和值
HKEYS key获取哈希表key中所有的字段
HLEN key获取哈希表中字段的数量
HVALS key获取哈希表中所有值
HDEL key field1 [field2..]删除哈希表key中一个/多个field字段
HINCRBY key field n为哈希表 key 中的指定字段的整数值加上增量n,并返回增量后结果 一样只适用于整数型字段
HINCRBYFLOAT key field n为哈希表 key 中的指定字段的浮点数值加上增量 n。
HSCAN key cursor [MATCH pattern] [COUNT count]迭代哈希表中的键值对。
------------------------HSET--HMSET--HSETNX----------------
127.0.0.1:6379> HSET studentx name sakura # 将studentx哈希表作为一个对象,设置name为sakura
(integer) 1
127.0.0.1:6379> HSET studentx name gyc # 重复设置field进行覆盖,并返回0
(integer) 0
127.0.0.1:6379> HSET studentx age 20 # 设置studentx的age为20
(integer) 1
127.0.0.1:6379> HMSET studentx sex 1 tel 15623667886 # 设置sex为1,tel为15623667886
OK
127.0.0.1:6379> HSETNX studentx name gyc # HSETNX 设置已存在的field
(integer) 0 # 失败
127.0.0.1:6379> HSETNX studentx email 12345@qq.com
(integer) 1 # 成功

----------------------HEXISTS--------------------------------
127.0.0.1:6379> HEXISTS studentx name # name字段在studentx中是否存在
(integer) 1 # 存在
127.0.0.1:6379> HEXISTS studentx addr
(integer) 0 # 不存在

-------------------HGET--HMGET--HGETALL-----------
127.0.0.1:6379> HGET studentx name # 获取studentx中name字段的value
"gyc"
127.0.0.1:6379> HMGET studentx name age tel # 获取studentx中name、age、tel字段的value
1) "gyc"
2) "20"
3) "15623667886"
127.0.0.1:6379> HGETALL studentx # 获取studentx中所有的field及其value
 1) "name"
 2) "gyc"
 3) "age"
 4) "20"
 5) "sex"
 6) "1"
 7) "tel"
 8) "15623667886"
 9) "email"
10) "12345@qq.com"


--------------------HKEYS--HLEN--HVALS--------------
127.0.0.1:6379> HKEYS studentx # 查看studentx中所有的field
1) "name"
2) "age"
3) "sex"
4) "tel"
5) "email"
127.0.0.1:6379> HLEN studentx # 查看studentx中的字段数量
(integer) 5
127.0.0.1:6379> HVALS studentx # 查看studentx中所有的value
1) "gyc"
2) "20"
3) "1"
4) "15623667886"
5) "12345@qq.com"

-------------------------HDEL--------------------------
127.0.0.1:6379> HDEL studentx sex tel # 删除studentx 中的sex、tel字段
(integer) 2
127.0.0.1:6379> HKEYS studentx
1) "name"
2) "age"
3) "email"

-------------HINCRBY--HINCRBYFLOAT------------------------
127.0.0.1:6379> HINCRBY studentx age 1 # studentx的age字段数值+1
(integer) 21
127.0.0.1:6379> HINCRBY studentx name 1 # 非整数字型字段不可用
(error) ERR hash value is not an integer
127.0.0.1:6379> HINCRBYFLOAT studentx weight 0.6 # weight字段增加0.6
"90.8"

Hash变更的数据user name age,尤其是用户信息之类的,经常变动的信息!Hash更适合于对象的存储,Sring更加适合字符串存储!

Zset(有序集合)

不同的是每个元素都会关联一个double类型的分数(score)。redis正是通过分数来为集合中的成员进行从小到大的排序。

score相同:按字典顺序排序

有序集合的成员是唯一的,但分数(score)却可以重复。

命令描述
ZADD key score member1 [score2 member2]向有序集合添加一个或多个成员,或者更新已存在成员的分数
ZCARD key获取有序集合的成员数
ZCOUNT key min max计算在有序集合中指定区间score的成员数
ZINCRBY key n member有序集合中对指定成员的分数加上增量 n
ZSCORE key member返回有序集中,成员的分数值
ZRANK key member返回有序集合中指定成员的索引
ZRANGE key start end通过索引区间返回有序集合成指定区间内的成员
ZRANGEBYLEX key min max通过字典区间返回有序集合的成员
ZRANGEBYSCORE key min max通过分数返回有序集合指定区间内的成员==-inf 和 +inf分别表示最小最大值,只支持开区间()==
ZLEXCOUNT key min max在有序集合中计算指定字典区间内成员数量
ZREM key member1 [member2..]移除有序集合中一个/多个成员
ZREMRANGEBYLEX key min max移除有序集合中给定的字典区间的所有成员
ZREMRANGEBYRANK key start stop移除有序集合中给定的排名区间的所有成员
ZREMRANGEBYSCORE key min max移除有序集合中给定的分数区间的所有成员
ZREVRANGE key start end返回有序集中指定区间内的成员,通过索引,分数从高到底
ZREVRANGEBYSCORRE key max min返回有序集中指定分数区间内的成员,分数从高到低排序
ZREVRANGEBYLEX key max min返回有序集中指定字典区间内的成员,按字典顺序倒序
ZREVRANK key member返回有序集合中指定成员的排名,有序集成员按分数值递减(从大到小)排序
ZINTERSTORE destination numkeys key1 [key2 ..]计算给定的一个或多个有序集的交集并将结果集存储在新的有序集合 key 中,numkeys:表示参与运算的集合数,将score相加作为结果的score
ZUNIONSTORE destination numkeys key1 [key2..]计算给定的一个或多个有序集的交集并将结果集存储在新的有序集合 key 中
ZSCAN key cursor [MATCH pattern] [COUNT count]迭代有序集合中的元素(包括元素成员和元素分值)
-------------------ZADD--ZCARD--ZCOUNT--------------
127.0.0.1:6379> ZADD myzset 1 m1 2 m2 3 m3 # 向有序集合myzset中添加成员m1 score=1 以及成员m2 score=2..
(integer) 2
127.0.0.1:6379> ZCARD myzset # 获取有序集合的成员数
(integer) 2
127.0.0.1:6379> ZCOUNT myzset 0 1 # 获取score在 [0,1]区间的成员数量
(integer) 1
127.0.0.1:6379> ZCOUNT myzset 0 2
(integer) 2

----------------ZINCRBY--ZSCORE--------------------------
127.0.0.1:6379> ZINCRBY myzset 5 m2 # 将成员m2的score +5
"7"
127.0.0.1:6379> ZSCORE myzset m1 # 获取成员m1的score
"1"
127.0.0.1:6379> ZSCORE myzset m2
"7"

--------------ZRANK--ZRANGE-----------------------------------
127.0.0.1:6379> ZRANK myzset m1 # 获取成员m1的索引,索引按照score排序,score相同索引值按字典顺序顺序增加
(integer) 0
127.0.0.1:6379> ZRANK myzset m2
(integer) 2
127.0.0.1:6379> ZRANGE myzset 0 1 # 获取索引在 0~1的成员
1) "m1"
2) "m3"
127.0.0.1:6379> ZRANGE myzset 0 -1 # 获取全部成员
1) "m1"
2) "m3"
3) "m2"

#testset=>{abc,add,amaze,apple,back,java,redis} score均为0
------------------ZRANGEBYLEX---------------------------------
127.0.0.1:6379> ZRANGEBYLEX testset - + # 返回所有成员
1) "abc"
2) "add"
3) "amaze"
4) "apple"
5) "back"
6) "java"
7) "redis"
127.0.0.1:6379> ZRANGEBYLEX testset - + LIMIT 0 3 # 分页 按索引显示查询结果的 0,1,2条记录
1) "abc"
2) "add"
3) "amaze"
127.0.0.1:6379> ZRANGEBYLEX testset - + LIMIT 3 3 # 显示 3,4,5条记录
1) "apple"
2) "back"
3) "java"
127.0.0.1:6379> ZRANGEBYLEX testset (- [apple # 显示 (-,apple] 区间内的成员
1) "abc"
2) "add"
3) "amaze"
4) "apple"
127.0.0.1:6379> ZRANGEBYLEX testset [apple [java # 显示 [apple,java]字典区间的成员
1) "apple"
2) "back"
3) "java"

-----------------------ZRANGEBYSCORE---------------------
127.0.0.1:6379> ZRANGEBYSCORE myzset 1 10 # 返回score在 [1,10]之间的的成员
1) "m1"
2) "m3"
3) "m2"
127.0.0.1:6379> ZRANGEBYSCORE myzset 1 5
1) "m1"
2) "m3"

--------------------ZLEXCOUNT-----------------------------
127.0.0.1:6379> ZLEXCOUNT testset - +
(integer) 7
127.0.0.1:6379> ZLEXCOUNT testset [apple [java
(integer) 3

------------------ZREM--ZREMRANGEBYLEX--ZREMRANGBYRANK--ZREMRANGEBYSCORE--------------------------------
127.0.0.1:6379> ZREM testset abc # 移除成员abc
(integer) 1
127.0.0.1:6379> ZREMRANGEBYLEX testset [apple [java # 移除字典区间[apple,java]中的所有成员
(integer) 3
127.0.0.1:6379> ZREMRANGEBYRANK testset 0 1 # 移除排名0~1的所有成员
(integer) 2
127.0.0.1:6379> ZREMRANGEBYSCORE myzset 0 3 # 移除score在 [0,3]的成员
(integer) 2


# testset=> {abc,add,apple,amaze,back,java,redis} score均为0
# myzset=> {(m1,1),(m2,2),(m3,3),(m4,4),(m7,7),(m9,9)}
----------------ZREVRANGE--ZREVRANGEBYSCORE--ZREVRANGEBYLEX-----------
127.0.0.1:6379> ZREVRANGE myzset 0 3 # 按score递减排序,然后按索引,返回结果的 0~3
1) "m9"
2) "m7"
3) "m4"
4) "m3"
127.0.0.1:6379> ZREVRANGE myzset 2 4 # 返回排序结果的 索引的2~4
1) "m4"
2) "m3"
3) "m2"
127.0.0.1:6379> ZREVRANGEBYSCORE myzset 6 2 # 按score递减顺序 返回集合中分数在[2,6]之间的成员
1) "m4"
2) "m3"
3) "m2"
127.0.0.1:6379> ZREVRANGEBYLEX testset [java (add # 按字典倒序 返回集合中(add,java]字典区间的成员
1) "java"
2) "back"
3) "apple"
4) "amaze"

-------------------------ZREVRANK------------------------------
127.0.0.1:6379> ZREVRANK myzset m7 # 按score递减顺序,返回成员m7索引
(integer) 1
127.0.0.1:6379> ZREVRANK myzset m2
(integer) 4


# mathscore=>{(xm,90),(xh,95),(xg,87)} 小明、小红、小刚的数学成绩
# enscore=>{(xm,70),(xh,93),(xg,90)} 小明、小红、小刚的英语成绩
-------------------ZINTERSTORE--ZUNIONSTORE-----------------------------------
127.0.0.1:6379> ZINTERSTORE sumscore 2 mathscore enscore # 将mathscore enscore进行合并 结果存放到sumscore
(integer) 3
127.0.0.1:6379> ZRANGE sumscore 0 -1 withscores # 合并后的score是之前集合中所有score的和
1) "xm"
2) "160"
3) "xg"
4) "177"
5) "xh"
6) "188"

127.0.0.1:6379> ZUNIONSTORE lowestscore 2 mathscore enscore AGGREGATE MIN # 取两个集合的成员score最小值作为结果的
(integer) 3
127.0.0.1:6379> ZRANGE lowestscore 0 -1 withscores
1) "xm"
2) "70"
3) "xg"
4) "87"
5) "xh"
6) "93"

应用案例:

  • set排序 存储班级成绩表 工资表排序!
  • 普通消息,1.重要消息 2.带权重进行判断
  • 排行榜应用实现,取Top N测试

win10连接虚拟机Redis [(70条消息) win10连接虚拟机Redis_陈一米八的博客-CSDN博客](url)

事务

Redis的单条命令是保证原子性的,但是redis事务不能保证原子性\color{red}{Redis的单条命令是保证原子性的,但是redis事务不能保证原子性}

Redis事务本质:一组命令的集合。

----------------- 队列 set set set 执行 -------------------

事务中每条命令都会被序列化,执行过程中按顺序执行,不允许其他命令进行干扰。

  • 一次性
  • 顺序性
  • 排他性
  1. Redis事务没有隔离级别的概念
  2. Redis单条命令是保证原子性的,但是事务不保证原子性!

Redis事务操作过程

  • 开启事务(multi
  • 命令入队
  • 执行事务(exec
    所有事务中的命令在加入时都没有被执行,直到提交时才会开始执行(Exec)一次性完成。
127.0.0.1:6379> multi # 开启事务
OK
127.0.0.1:6379> set k1 v1 # 命令入队
QUEUED
127.0.0.1:6379> set k2 v2 # ..
QUEUED
127.0.0.1:6379> get k1
QUEUED
127.0.0.1:6379> set k3 v3
QUEUED
127.0.0.1:6379> keys *
QUEUED
127.0.0.1:6379> exec # 事务执行
1) OK
2) OK
3) "v1"
4) OK
5) 1) "k3"
   2) "k2"
   3) "k1"

取消事务(discurd)

127.0.0.1:6379> multi
OK
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> DISCARD # 放弃事务
OK
127.0.0.1:6379> EXEC 
(error) ERR EXEC without MULTI # 当前未开启事务
127.0.0.1:6379> get k1 # 被放弃事务中命令并未执行
(nil)

事务错误

代码语法错误(编译时异常)所有的命令都不执行

127.0.0.1:6379> multi
OK
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> error k1 # 这是一条语法错误命令
(error) ERR unknown command `error`, with args beginning with: `k1`, # 会报错但是不影响后续命令入队 
127.0.0.1:6379> get k2
QUEUED
127.0.0.1:6379> EXEC
(error) EXECABORT Transaction discarded because of previous errors. # 执行报错
127.0.0.1:6379> get k1 
(nil) # 其他命令并没有被执行

代码逻辑错误 (运行时异常) **其他命令可以正常执行 ** >>> *所以不保证事务原子性

127.0.0.1:6379> multi
OK
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> INCR k1 # 这条命令逻辑错误(对字符串进行增量)
QUEUED
127.0.0.1:6379> get k2
QUEUED
127.0.0.1:6379> exec
1) OK
2) OK
3) (error) ERR value is not an integer or out of range # 运行时报错
4) "v2" # 其他命令正常执行

# 虽然中间有一条命令报错了,但是后面的指令依旧正常执行成功了。
# 所以说Redis单条指令保证原子性,但是Redis事务不能保证原子性。

监控

悲观锁:

  • 很悲观,认为什么时候都会出现问题,无论做什么都会加锁

乐观锁:

  • 很乐观,认为什么时候都不会出现问题,所以不会上锁!更新数据的时候去判断一下,在此期间是否有人修改过这个数据
  • 获取version
  • 更新的时候比较version 使用watch key监控指定数据,相当于乐观锁加锁。

正常执行

127.0.0.1:6379> set money 100 # 设置余额:100
OK
127.0.0.1:6379> set use 0 # 支出使用:0
OK
127.0.0.1:6379> watch money # 监视money (上锁)
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> DECRBY money 20
QUEUED
127.0.0.1:6379> INCRBY use 20
QUEUED
127.0.0.1:6379> exec # 监视值没有被中途修改,事务正常执行
1) (integer) 80
2) (integer) 20

测试多线程修改值,使用watch可以当做redis的乐观锁操作(相当于getversion)

我们启动另外一个客户端模拟插队线程。

线程1:

127.0.0.1:6379> watch money # money上锁
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> DECRBY money 20
QUEUED
127.0.0.1:6379> INCRBY use 20
QUEUED
127.0.0.1:6379> 	# 此时事务并没有执行

模拟线程插队,线程2:

127.0.0.1:6379> INCRBY money 500 # 修改了线程一中监视的money
(integer) 600

回到线程1,执行事务:

127.0.0.1:6379> EXEC # 执行之前,另一个线程修改了我们的值,这个时候就会导致事务执行失败
(nil) # 没有结果,说明事务执行失败

127.0.0.1:6379> get money # 线程2 修改生效
"600"
127.0.0.1:6379> get use # 线程1事务执行失败,数值没有被修改
"0"

解锁获取最新值,然后再加锁进行事务。

unwatch进行解锁。

注意:每次提交执行exec后都会自动释放锁,不管是否成功

SpringBoot整合

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

application.yml

spring:
  redis:
    host: 192.168.239.128
    port: 6379

conf

package com.redis.config;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.StringRedisSerializer;
/**
 * Redis配置类
 */
@Configuration
public class ConfigRedis {

    @Autowired
    private RedisConnectionFactory redisConnectionFactory;

    @Bean
    public RedisTemplate<String, Object> redisTemplate() {
        RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();

        // 序列化key
        redisTemplate.setKeySerializer(new StringRedisSerializer());
        redisTemplate.setValueSerializer(new StringRedisSerializer());

        // 序列化hash
        redisTemplate.setHashKeySerializer(new StringRedisSerializer());
        redisTemplate.setHashValueSerializer(new StringRedisSerializer());

        // 连接redis数据库
        redisTemplate.setConnectionFactory(redisConnectionFactory);

        return redisTemplate;
    }
}

controller (RedisUtil是操作redis工具类)
工具类地址blog.csdn.net/weixin_4608…

package com.redis.controller;

import com.redis.util.RedisUtil;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;


@RequestMapping("/redis")
@RestController
public class RequestController {

    @Autowired
    private RedisTemplate<String, Object> redisTemplate;

    @Autowired
    RedisUtil redisUtil;


    @GetMapping(value = "/get")
    public String get() {
        // 工具类
        redisUtil.set("name", "我来了---");

        // 原生
        redisTemplate.opsForValue().set("age", "10岁");
        return redisUtil.get("name").toString()
                .concat(redisTemplate.opsForValue().get("age").toString());
    }
}

image.png

Redis主从复制

概念
​ 主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master/Leader),后者称为从节点(Slave/Follower), 数据的复制是单向的!只能由主节点复制到从节点(主节点以写为主、从节点以读为主)。

默认情况下,每台Redis服务器都是主节点,一个主节点可以有0个或者多个从节点,但每个从节点只能由一个主节点。

作用

  1. 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余的方式。
  2. 故障恢复:当主节点故障时,从节点可以暂时替代主节点提供服务,是一种服务冗余的方式
  3. 负载均衡:在主从复制的基础上,配合读写分离,由主节点进行写操作,从节点进行读操作,分担服务器的负载;尤其是在多读少写的场景下,通过多个从节点分担负载,提高并发量。
  4. 高可用基石:主从复制还是哨兵和集群能够实施的基础。

为什么使用集群

  1. 单台服务器难以负载大量的请求
  2. 单台服务器故障率高,系统崩坏概率大
  3. 单台服务器内存容量有限。

环境配置

查看当前库的信息:info replication

127.0.0.1:6379> info replication
# Replication
role:master # 角色
connected_slaves:0 # 从机数量
master_replid:3b54deef5b7b7b7f7dd8acefa23be48879b4fcff
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0

既然需要启动多个服务,就需要多个配置文件。每个配置文件对应修改以下信息:

  • 端口号
  • pid文件名
  • 日志文件名
  • rdb文件名

启动单机多服务集群:

image.png

一主二从配置

默认情况下,每台Redis服务器都是主节点;我们一般情况下只用配置从机就好了!

认老大!一主(79)二从(80,81)

使用SLAVEOF host port就可以为从机配置主机了。

image.png

image.png

然后主机上也能看到从机的状态:

image.png

我们这里是使用命令搭建,是暂时的,真实开发中应该在从机的配置文件中进行配置,这样的话是永久的。

image.png

使用规则

  1. 从机只能读,不能写,主机可读可写但是多用于写。
 127.0.0.1:6381> set name sakura # 从机6381写入失败
(error) READONLY You can't write against a read only replica.

127.0.0.1:6380> set name sakura # 从机6380写入失败
(error) READONLY You can't write against a read only replica.

127.0.0.1:6379> set name sakura
OK
127.0.0.1:6379> get name
"sakura"

2.当主机断电宕机后,默认情况下从机的角色不会发生变化 ,集群中只是失去了写操作,当主机恢复以后,又会连接上从机恢复原状。

  1. 当从机断电宕机后,若不是使用配置文件配置的从机,再次启动后作为主机是无法获取之前主机的数据的,若此时重新配置称为从机,又可以获取到主机的所有数据。这里就要提到一个同步原理。
  2. 第二条中提到,默认情况下,主机故障后,不会出现新的主机,有两种方式可以产生新的主机:
  • 从机手动执行命令slaveof no one,这样执行以后从机会独立出来成为一个主机
  • 使用哨兵模式(自动选举)

如果没有老大了,这个时候能不能选择出来一个老大呢?手动!

如果主机断开了连接,我们可以使用SLAVEOF no one让自己变成主机!其他的节点就可以手动连接到最新的主节点(手动)!如果这个时候老大修复了,那么久重新连接!

哨兵模式

主从切换技术的方法是:当主服务器宕机后,需要手动把一台从服务器切换为主服务器,这就需要人工干预,费事费力,还会造成一段时间内服务不可用。这不是一种推荐的方式,更多时候,我们优先考虑哨兵模式

哨兵的作用:

  • 通过发送命令,让Redis服务器返回监控其运行状态,包括主服务器和从服务器。
  • 当哨兵监测到master宕机,会自动将slave切换成master,然后通过发布订阅模式通知其他的从服务器,修改配置文件,让它们切换主机。

哨兵的核心配置
sentinel monitor mymaster 127.0.0.1 6379 1

  • 数字1表示 :当一个哨兵主观认为主机断开,就可以客观认为主机故障,然后开始选举新的主机

测试
redis-sentinel xxx/sentinel.conf

成功启动哨兵模式

image.png

此时哨兵监视着我们的主机6379,当我们断开主机后:

image.png

哨兵模式优缺点

优点:

  1. 哨兵集群,基于主从复制模式,所有主从复制的优点,它都有
  2. 主从可以切换,故障可以转移,系统的可用性更好
  3. 哨兵模式是主从模式的升级,手动到自动,更加健壮

缺点:

  1. Redis不好在线扩容,集群容量一旦达到上限,在线扩容就十分麻烦
  2. 实现哨兵模式的配置其实是很麻烦的,里面有很多配置项

哨兵模式的全部配置
完整的哨兵模式配置文件 sentinel.conf

# Example sentinel.conf
 
# 哨兵sentinel实例运行的端口 默认26379
port 26379
 
# 哨兵sentinel的工作目录
dir /tmp
 
# 哨兵sentinel监控的redis主节点的 ip port 
# master-name  可以自己命名的主节点名字 只能由字母A-z、数字0-9 、这三个字符".-_"组成。
# quorum 当这些quorum个数sentinel哨兵认为master主节点失联 那么这时 客观上认为主节点失联了
# sentinel monitor <master-name> <ip> <redis-port> <quorum>
sentinel monitor mymaster 127.0.0.1 6379 1
 
# 当在Redis实例中开启了requirepass foobared 授权密码 这样所有连接Redis实例的客户端都要提供密码
# 设置哨兵sentinel 连接主从的密码 注意必须为主从设置一样的验证密码
# sentinel auth-pass <master-name> <password>
sentinel auth-pass mymaster MySUPER--secret-0123passw0rd
 
 
# 指定多少毫秒之后 主节点没有应答哨兵sentinel 此时 哨兵主观上认为主节点下线 默认30秒
# sentinel down-after-milliseconds <master-name> <milliseconds>
sentinel down-after-milliseconds mymaster 30000
 
# 这个配置项指定了在发生failover主备切换时最多可以有多少个slave同时对新的master进行 同步,
这个数字越小,完成failover所需的时间就越长,
但是如果这个数字越大,就意味着越 多的slave因为replication而不可用。
可以通过将这个值设为 1 来保证每次只有一个slave 处于不能处理命令请求的状态。
# sentinel parallel-syncs <master-name> <numslaves>
sentinel parallel-syncs mymaster 1
 
 
 
# 故障转移的超时时间 failover-timeout 可以用在以下这些方面: 
#1. 同一个sentinel对同一个master两次failover之间的间隔时间。
#2. 当一个slave从一个错误的master那里同步数据开始计算时间。直到slave被纠正为向正确的master那里同步数据时。
#3.当想要取消一个正在进行的failover所需要的时间。  
#4.当进行failover时,配置所有slaves指向新的master所需的最大时间。不过,即使过了这个超时,slaves依然会被正确配置为指向master,但是就不按parallel-syncs所配置的规则来了
# 默认三分钟
# sentinel failover-timeout <master-name> <milliseconds>
sentinel failover-timeout mymaster 180000
 
# SCRIPTS EXECUTION
 
#配置当某一事件发生时所需要执行的脚本,可以通过脚本来通知管理员,例如当系统运行不正常时发邮件通知相关人员。
#对于脚本的运行结果有以下规则:
#若脚本执行后返回1,那么该脚本稍后将会被再次执行,重复次数目前默认为10
#若脚本执行后返回2,或者比2更高的一个返回值,脚本将不会重复执行。
#如果脚本在执行过程中由于收到系统中断信号被终止了,则同返回值为1时的行为相同。
#一个脚本的最大执行时间为60s,如果超过这个时间,脚本将会被一个SIGKILL信号终止,之后重新执行。
 
#通知型脚本:当sentinel有任何警告级别的事件发生时(比如说redis实例的主观失效和客观失效等等),将会去调用这个脚本,
#这时这个脚本应该通过邮件,SMS等方式去通知系统管理员关于系统不正常运行的信息。调用该脚本时,将传给脚本两个参数,
#一个是事件的类型,
#一个是事件的描述。
#如果sentinel.conf配置文件中配置了这个脚本路径,那么必须保证这个脚本存在于这个路径,并且是可执行的,否则sentinel无法正常启动成功。
#通知脚本
# sentinel notification-script <master-name> <script-path>
  sentinel notification-script mymaster /var/redis/notify.sh
 
# 客户端重新配置主节点参数脚本
# 当一个master由于failover而发生改变时,这个脚本将会被调用,通知相关的客户端关于master地址已经发生改变的信息。
# 以下参数将会在调用脚本时传给脚本:
# <master-name> <role> <state> <from-ip> <from-port> <to-ip> <to-port>
# 目前<state>总是“failover”,
# <role>是“leader”或者“observer”中的一个。 
# 参数 from-ip, from-port, to-ip, to-port是用来和旧的master和新的master(即旧的slave)通信的
# 这个脚本应该是通用的,能被多次调用,不是针对性的。
# sentinel client-reconfig-script <master-name> <script-path>
sentinel client-reconfig-script mymaster /var/redis/reconfig.sh

缓存穿透

www.processon.com/view/link/6…

缓存穿透:缓存和数据库中都没有的数据,可用户还是源源不断的发起请求,导致每次请求都会到数据库,从而压垮数据库。

比如客户查询一个根本不存在的东西,首先从Redis中查不到,然后会去数据库中查询,数据库中也查询不到,那么就不会将数据放入到缓存中,后面如果还有类似源源不断的请求,最后都会压到数据库来处理,从而给数据库造成巨大的压力。

解决方案

布隆过滤器

对所有可能查询的参数以Hash的形式存储,以便快速确定是否存在这个值,在控制层先进行拦截校验,校验不通过直接打回,减轻了存储系统的压力。

缓存空对象

一次请求若在缓存和数据库中都没找到,就在缓存中方一个空对象用于处理后续这个请求。

这样做有一个缺陷:存储空对象也需要空间,大量的空对象会耗费一定的空间,存储效率并不高。解决这个缺陷的方式就是设置较短过期时间

即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响。

缓存击穿(量太大,缓存过期)

Redis中一个热点key在失效的同时,大量的请求过来,从而会全部到达数据库,压垮数据库。

这里要注意的是这是某一个热点key过期失效,和后面介绍缓存雪崩是有区别的。比如淘宝双十一,对于某个特价热门的商品信息,缓存在Redis中,刚好0点,这个商品信息在Redis中过期查不到了,这时候大量的用户又同时正好访问这个商品,就会造成大量的请求同时到达数据库。

解决方案

设置热点数据永不过期 这样就不会出现热点数据过期的情况,但是当Redis内存空间满的时候也会清理部分数据,而且此种方案会占用空间,一旦热点数据多了起来,就会占用部分空间。
加互斥锁(分布式锁) 在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。保证同时刻只有一个线程访问。这样对锁的要求就十分高。

缓存雪崩

缓存雪崩:Redis中缓存的数据大面积同时失效,或者Redis宕机,从而会导致大量请求直接到数据库,压垮数据库。

大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。

对于一个业务系统,如果Redis宕机或大面积的key同时过期,会导致大量请求同时打到数据库,这是灾难性的问题。

解决方案

  • redis高可用

这个思想的含义是,既然redis有可能挂掉,那我多增设几台redis,这样一台挂掉之后其他的还可以继续工作,其实就是搭建的集群

  • 限流降级

这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。

  • 数据预热

数据加热的含义就是在正式部署之前,我先把可能的数据先预先访问一遍,这样部分可能大量访问的数据就会加载到缓存中。在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。

布隆过滤器

转载参考:blog.csdn.net/DDDDeng_/ar…