【算法50天:Day50】第九章动态规划 买卖股票的最佳时机III(123)

120 阅读4分钟

题目一:

image.png

思路

这道题目相对 121.买卖股票的最佳时机 (opens new window)和 122.买卖股票的最佳时机II (opens new window)难了不少。

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

  1. 确定dp数组以及下标的含义

一天一共就有五个状态,

  1. 没有操作
  2. 第一次买入
  3. 第一次卖出
  4. 第二次买入
  5. 第二次卖出

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

  1. 确定递推公式

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  1. dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

首先卖出的操作一定是收获利润,整个股票买卖最差情况也就是没有盈利即全程无操作现金为0,

从递推公式中可以看出每次是取最大值,那么既然是收获利润如果比0还小了就没有必要收获这个利润了。

所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

  1. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  1. 举例推导dp数组

以输入[1,2,3,4,5]为例

123.买卖股票的最佳时机III

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。

所以最终最大利润是dp[4][4]

以上五部都分析完了,不难写出如下代码:

var maxProfit = function(prices) {
    // 一天一共就有五个状态,

    // 没有操作   0
    // 第一次买入 1
    // 第一次卖出 2
    // 第二次买入 3
    // 第二次卖出 4
    // dp[i][j]i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
    let len = prices.length
    const dp = new Array(len).fill(0).map(x => new Array(5).fill(0))
    dp[0][1] = -prices[0]
    dp[0][3] = -prices[0]
    for (let i = 1; i < len; i++) {
        dp[i][0] = dp[i - 1] [0]
        // 达到dp[i][1]状态,有两个具体操作:
        // 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
        // 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
        dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i])
        // dp[i][2]也有两个操作:
        // 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
        // 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
        dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i])
        dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]) // 同理
        dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]) // 同理
    }
    return dp[len - 1][4]
};

当然,大家可以看到力扣官方题解里的一种优化空间写法,这里给出对应的JS版本: (相当于之前的滚动数组)

const maxProfit = prices => {
    const len = prices.length;
    const dp = new Array(5).fill(0);
    dp[1] = -prices[0];
    dp[3] = -prices[0];
    for (let i = 1; i < len; i++) {
        dp[1] = Math.max(dp[1], dp[0] - prices[i]);
        dp[2] = Math.max(dp[2], dp[1] + prices[i]);
        dp[3] = Math.max(dp[3], dp[2] - prices[i]);
        dp[4] = Math.max(dp[4], dp[3] + prices[i]);
    }
    return dp[4];
};

大家会发现dp[2]利用的是当天的dp[1]。 但结果也是对的。

来简单解释一下:

dp[1] = max(dp[1], dp[0] - prices[i]); 如果dp[1]取dp[1],即保持买入股票的状态,那么 dp[2] = max(dp[2], dp[1] + prices[i]);中dp[1] + prices[i] 就是今天卖出。

如果dp[1]取dp[0] - prices[i],今天买入股票,那么dp[2] = max(dp[2], dp[1] + prices[i]);中的dp[1] + prices[i]相当于是尽在再卖出股票,一买一卖收益为0,对所得现金没有影响。相当于今天买入股票又卖出股票,等于没有操作,保持昨天卖出股票的状态了。

这种写法看上去简单,其实思路很绕,不建议大家这么写,这么思考,很容易把自己绕进去!

对于本题,把版本一的写法研究明白,足以!

#其他语言版本