图-深拷贝

240 阅读1分钟

133. 克隆图

给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。

图中的每个节点都包含它的值 valint) 和其邻居的列表(list[Node])。

class Node {
    public int val;
    public List<Node> neighbors;
}

 

测试用例格式:

简单起见,每个节点的值都和它的索引相同。例如,第一个节点值为 1(val = 1),第二个节点值为 2(val = 2),以此类推。该图在测试用例中使用邻接列表表示。

邻接列表 是用于表示有限图的无序列表的集合。每个列表都描述了图中节点的邻居集。

给定节点将始终是图中的第一个节点(值为 1)。你必须将 给定节点的拷贝 作为对克隆图的引用返回。

 

示例 1:

输入: adjList = [[2,4],[1,3],[2,4],[1,3]]
输出: [[2,4],[1,3],[2,4],[1,3]]
解释: 图中有 4 个节点。
节点 1 的值是 1,它有两个邻居:节点 24 。
节点 2 的值是 2,它有两个邻居:节点 13 。
节点 3 的值是 3,它有两个邻居:节点 24 。
节点 4 的值是 4,它有两个邻居:节点 13

示例 2:

输入: adjList = [[]]
输出: [[]]
解释: 输入包含一个空列表。该图仅仅只有一个值为 1 的节点,它没有任何邻居。

示例 3:

输入: adjList = []
输出: []
解释: 这个图是空的,它不含任何节点。

示例 4:

输入: adjList = [[2],[1]]
输出: [[2],[1]]

 

提示:

  1. 节点数不超过 100 。
  2. 每个节点值 Node.val 都是唯一的,1 <= Node.val <= 100
  3. 无向图是一个简单图,这意味着图中没有重复的边,也没有自环。
  4. 由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点 p 的邻居。
  5. 图是连通图,你可以从给定节点访问到所有节点。
/**
 * // Definition for a Node.
 * function Node(val, neighbors) {
 *    this.val = val === undefined ? 0 : val;
 *    this.neighbors = neighbors === undefined ? [] : neighbors;
 * };
 */

/**
 * @param {Node} node
 * @return {Node}
 */
var cloneGraph = function(node) {
    if (node === null) {
    	return node;
    }

    const map = new Map();

    const dfsGraph = (node) => {
    	if (map.has(node)) {
    		return map.get(node);
    	}
    	const { val, neighbors } = node;
    	const cloneNode = new Node(val, []);
    	map.set(node, cloneNode);
    	for (const neighbor of neighbors) {
    		cloneNode.neighbors.push(dfsGraph(neighbor))
    	}

    	return cloneNode;
    }

    return dfsGraph(node);
    
};