【算法45天:Day45】第九章动态规划 完全平方数(279)

55 阅读3分钟

题目三:

image.png

思路

可能刚看这种题感觉没啥思路,又平方和的,又最小数的。

我来把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

感受出来了没,这么浓厚的完全背包氛围,而且和昨天的题目动态规划:322. 零钱兑换 (opens new window)就是一样一样的!

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[j]:和为j的完全平方数的最少数量为dp[j]

  1. 确定递推公式

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = Math.min(dp[j - i * i] + 1, dp[j]);

  1. dp数组如何初始化

dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。

有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?

看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, ...),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。

非0下标的dp[j]应该是多少呢?

从递归公式dp[j] = Math.min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖

  1. 确定遍历顺序

我们知道这是完全背包,

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

动态规划:322. 零钱兑换 (opens new window)中我们就深入探讨了这个问题,本题也是一样的,是求最小数!

所以本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!

我这里先给出外层遍历背包,内层遍历物品的代码:

let dp = new Array(n + 1).fill(Infinity)
dp[0] = 0;
for (let i = 0; i <= n; i++) { // 遍历背包
    for (let j = 1; j * j <= i; j++) { // 遍历物品
        dp[i] = Math.min(dp[i - j * j] + 1, dp[i]);
    }
}
  1. 举例推导dp数组

已输入n为5例,dp状态图如下:

279.完全平方数

dp[0] = 0

dp[1] = Math.min(dp[0] + 1) = 1

dp[2] = Math.min(dp[1] + 1) = 2

dp[3] = Math.min(dp[2] + 1) = 3

dp[4] = Math.minn(dp[3] + 1, dp[0] + 1) = 1

dp[5] = Math.min(dp[4] + 1, dp[1] + 1) = 2

最后的dp[n]为最终结果。

JS代码

以上动规五部曲分析完毕JS代码如下:

// 先遍历物品,再遍历背包
var numSquares1 = function(n) {
    let dp = new Array(n + 1).fill(Infinity)
    dp[0] = 0

    for(let i = 1; i**2 <= n; i++) {
        let val = i**2
        for(let j = val; j <= n; j++) {
            dp[j] = Math.min(dp[j], dp[j - val] + 1)
        }
    }
    return dp[n]
};
// 先遍历背包,再遍历物品
var numSquares2 = function(n) {
    let dp = new Array(n + 1).fill(Infinity)
    dp[0] = 0

    for(let i = 1; i <= n; i++) {
        for(let j = 1; j * j <= i; j++) {
            dp[i] = Math.min(dp[i - j * j] + 1, dp[i])
        }
    }

    return dp[n]
};

总结

如果大家认真做了昨天的题目动态规划:322. 零钱兑换 (opens new window),今天这道就非常简单了,一样的套路一样的味道。

但如果没有按照「代码随想录」的题目顺序来做的话,做动态规划或者做背包问题,上来就做这道题,那还是挺难的!

经过前面的训练这道题已经是简单题了,哈哈哈