持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第29天,点击查看活动详情
一、读写锁介绍
现实中有这样一种场景:对共享资源有读和写的操作,且写操作没有读操作那么频繁(读多写少)。在没有写操作的时候,多个线程同时读一个资源没有任何问题,所以应该允许多个线程同时读取共享资源(读读可以并发);但是如果一个线程想去写这些共享资源,就不应该允许其他线程对该资源进行读和写操作了(读写,写读,写写互斥)。在读多于写的情况下,读写锁能够提供比排它锁更好的并发性和吞吐量。
针对这种场景,JAVA的并发包提供了读写锁ReentrantReadWriteLock,它内部,维护了一对相关的锁,一个用于只读操作,称为读锁;一个用于写入操作,称为写锁,描述如下:
线程进入读锁的前提条件:
- 没有其他线程的写锁
- 没有写请求或者有写请求,但调用线程和持
有锁的线程是同一个。
线程进入写锁的前提条件:
- 没有其他线程的读锁
- 没有其他线程的写锁
而读写锁有以下三个重要的特性:
公平选择性:支持非公平(默认)和公平的锁获取方式,吞吐量还是非公平优于公平。可重入:读锁和写锁都支持线程重入。以读写线程为例:读线程获取读锁后,能够再次获取读锁。写线程在获取写锁之后能够再次获取写锁,同时也可以获取读锁。锁降级:遵循获取写锁、再获取读锁最后释放写锁的次序,写锁能够降级成为读锁。
二、ReentrantReadWriteLock的使用
2-1、读写锁接口ReadWriteLock
一对方法,分别获得读锁和写锁 Lock 对象。
2-2、ReentrantReadWriteLock类结构
ReentrantReadWriteLock是可重入的读写锁实现类。在它内部,维护了一对相关的锁,一个用于只读操作,另一个用于写入操作。只要没有 Writer 线程,读锁可以由多个 Reader 线程同时持有。也就是说,写锁是独占的,读锁是共享的。
2-2-1、如何使用读写锁
private ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
private Lock r = readWriteLock.readLock();
private Lock w = readWriteLock.writeLock();
// 读操作上读锁
public Data get(String key) {
r.lock();
try {
// TODO 业务逻辑
}finally {
r.unlock();
}
}
// 写操作上写锁
public Data put(String key, Data value) {
w.lock();
try {
// TODO 业务逻辑
} finally {
w.unlock();
}
}
注意事项
读锁不支持条件变量重入时升级不支持:持有读锁的情况下去获取写锁,会导致获取永久等待重入时支持降级: 持有写锁的情况下可以去获取读锁
应用场景
ReentrantReadWriteLock适合读多写少的场景
import java.util.HashMap;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class Cache {
static Map<String, Object> map = new HashMap<String, Object>();
static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
static Lock r = rwl.readLock();
static Lock w = rwl.writeLock();
// 获取一个key对应的value
public static final Object get(String key) {
r.lock();
try {
return map.get(key);
} finally {
r.unlock();
}
}
// 设置key对应的value,并返回旧的value
public static final Object put(String key, Object value) {
w.lock();
try {
return map.put(key, value);
} finally {
w.unlock();
}
}
// 清空所有的内容
public static final void clear() {
w.lock();
try {
map.clear();
} finally {
w.unlock();
}
}
}
上述示例中,Cache组合一个非线程安全的HashMap作为缓存的实现,同时使用读写锁的读锁和写锁来保证Cache是线程安全的。在读操作get(String key)方法中,需要获取读锁,这使得并发访问该方法时不会被阻塞。写操作put(String key,Object value)方法和clear()方法,在更新 HashMap时必须提前获取写锁,当获取写锁后,其他线程对于读锁和写锁的获取均被阻塞,而 只有写锁被释放之后,其他读写操作才能继续。Cache使用读写锁提升读操作的并发性,也保证每次写操作对所有的读写操作的可见性,同时简化了编程方式
锁降级
锁降级指的是写锁降级成为读锁。如果当前线程拥有写锁,然后将其释放,最后再获取读锁,这种分段完成的过程不能称之为锁降级。锁降级是指把持住(当前拥有的)写锁,再获取到读锁,随后释放(先前拥有的)写锁的过程。锁降级可以帮助我们拿到当前线程修改后的结果而不被其他线程所破坏,防止更新丢失。
锁降级的使用示例
因为数据不常变化,所以多个线程可以并发地进行数据处理,当数据变更后,如果当前线程感知到数据变化,则进行数据的准备工作,同时其他处理线程被阻塞,直到当前线程完成数据的准备工作。
private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private final Lock r = rwl.readLock();
private final Lock w = rwl.writeLock();
private volatile boolean update = false;
public void processData() {
readLock.lock();
if (!update) {
// 必须先释放读锁
readLock.unlock();
// 锁降级从写锁获取到开始
writeLock.lock();
try {
if (!update) {
// TODO 准备数据的流程(略)
update = true;
}
readLock.lock();
} finally {
writeLock.unlock();
}
// 锁降级完成,写锁降级为读锁
}
try {
//TODO 使用数据的流程(略)
} finally {
readLock.unlock();
}
}
锁降级中读锁的获取是否必要呢?答案是必要的。主要是为了保证数据的可见性,如果当前线程不获取读锁而是直接释放写锁,假设此刻另一个线程(记作线程T)获取了写锁并修改了数据,那么当前线程无法感知线程T的数据更新。如果当前线程获取读锁,即遵循锁降级的步骤,则线程T将会被阻塞,直到当前线程使用数据并释放读锁之后,线程T才能获取写锁进行数据更新。
RentrantReadWriteLock不支持锁升级(把持读锁、获取写锁,最后释放读锁的过程)。目的也是保证数据可见性,如果读锁已被多个线程获取,其中任意线程成功获取了写锁并更新了数据,则其更新对其他获取到读锁的线程是不可见的。