收获(源于学长代码讲解)
打断点
之前也知道程序要打断点,就比如刷力扣的题目。不过对于深度学习就没有想起来打断点的习惯。一个特别大的好处是打断点之后,就可以清晰地知道各个变量的数据类型,和具体的情况,而不用一个个去打印出来查看。
抽象类和非抽象类
抽象类的作用是定义各种接口,但是不具体定义各种功能,不可以使用super方法。 非抽象类可以使用super方法继承。
类(变量) 对象(变量)
这种会把参数传到哪里? 类内会自带
Import packages
问:tqdm类有啥用?
问:tensorboard、Dateset、Dateloader如何导入?
# 导入需要的包
# Numerical Operations
import math
import numpy as np
# Reading/Writing Data
import pandas as pd # 用于读取文件
import os # 对文件和文件夹进行操作
import csv
# For Progress Bar
from tqdm import tqdm # 答:tqdm库用于生成训练时的进度条展示(需要pip)
# Pytorch
import torch
import torch.nn as nn # torch.nn是pytorch中自带的一个函数库,里面包含了神经网络中使用的一些常用函数
# 答:导入方式如下。
from torch.utils.data import Dataset, DataLoader, random_split
'''
Dataset:提供一种方式去获取数据及label,数据集在什么位置
DataLoader:为之后的网络提供不同的数据形式
random_split:无重复的随机划分数据集
'''
# For plotting learning curve
# 可视化工具 tensorboard
from torch.utils.tensorboard import SummaryWriter
Some Utility Functions
same_seed函数作用?
def same_seed(seed):
'''Fixes random number generator seeds for reproducibility.'''
'''固定random seed 还原实验结果'''
'''答:可以使得训练集和验证集的划分是无覆盖的,也就是总数据 = 训练集 + 测试集 并且训练集和测试集没有交集'''
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
# 定义一些功能
# 该方法在接下来DataLoader部分有调用,用于划分训练集和验证集
def train_valid_split(data_set, valid_ratio, seed):
'''Split provided training data into training set and validation set'''
valid_set_size = int(valid_ratio * len(data_set)) # 验证集的长度
train_set_size = len(data_set) - valid_set_size # 训练集的长度 = 总长度 - 验证集长度
# random_split无重复的随机划分数据集,第二个参数中传入的是需要划分成的两个数据集size
train_set, valid_set = random_split(data_set, [train_set_size, valid_set_size], generator=torch.Generator().manual_seed(seed))
# 返回numpy数组形式
return np.array(train_set), np.array(valid_set)
def predict(test_loader, model, device):
model.eval() # Set your model to evaluation mode.
preds = []
for x in tqdm(test_loader):
x = x.to(device)
with torch.no_grad():
pred = model(x)
preds.append(pred.detach().cpu())
preds = torch.cat(preds, dim=0).numpy()
return preds
Dateset
# 数据集构造
class COVID19Dataset(Dataset):
'''
x: Features.
y: Targets, if none, do prediction.
'''
def __init__(self, x, y=None):
if y is None:
self.y = y
else:
self.y = torch.FloatTensor(y)
self.x = torch.FloatTensor(x)
# 获取某一个具体数据
def __getitem__(self, idx):
if self.y is None:
return self.x[idx]
else:
return self.x[idx], self.y[idx]
# 数据集长度
def __len__(self):
return len(self.x)
Neural Network Model
问:如何实现各网络层的打包?
# 设计模型
class My_Model(nn.Module):
def __init__(self, input_dim):
super(My_Model, self).__init__() # 继承nn.Module类
# TODO: modify model's structure, be aware of dimensions.
# 答:使用nn.Swquential来进行层结构构建。
self.layers = nn.Sequential(
nn.Linear(input_dim, 16),
nn.ReLU(),
nn.Linear(16, 8),
nn.ReLU(),
nn.Linear(8, 1)
)
# 定义正向传播的过程
def forward(self, x):
x = self.layers(x)
x = x.squeeze(1) # (B, 1) -> (B)
return x
Feature Selection
为什么要进行特征选择?
# 特征选择
def select_feat(train_data, valid_data, test_data, select_all=True):
'''Selects useful features to perform regression'''
# [:,-1]冒号表示第一个维度选择全部,即全部行,-1:表示倒数第一个元素,即label
y_train, y_valid = train_data[:, -1], valid_data[:, -1]
# #[:,:-1]第一个冒号表示第一个维度选择全部,即全部行,
# :-1表示在第二个维度上从开始至最后一个元素(不包含最后一个元素)即选择了除最后一列的所有特征
raw_x_train, raw_x_valid, raw_x_test = train_data[:, :-1], valid_data[:, :-1], test_data
# 答:有一些特征对于训练效果没有用,甚至起反作用,要进行特征筛选。
# 选择所有特征
if select_all:
feat_idx = list(range(raw_x_train.shape[1]))
# 选择部分特征
else:
feat_idx = [0, 1, 2, 3, 4] # TODO: Select suitable feature columns.
return raw_x_train[:, feat_idx], raw_x_valid[:, feat_idx], raw_x_test[:, feat_idx], y_train, y_valid
Training Loop
# 模型训练
def trainer(train_loader, valid_loader, model, config, device):
criterion = nn.MSELoss(reduction='mean') # Define your loss function, do not modify this.
# Define your optimization algorithm.
# TODO: Please check https://pytorch.org/docs/stable/optim.html to get more available algorithms.
# TODO: L2 regularization (optimizer(weight decay...) or implement by your self).
# 优化算法 随机梯度下降算法 SGD
optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.9)
writer = SummaryWriter() # Writer of tensoboard.
if not os.path.isdir('./models'):
os.mkdir('./models') # Create directory of saving models.
n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0
for epoch in range(n_epochs):
# 开启训练模式batchNorm层,dropout层等用于优化训练而添加的网络层开启
model.train() # Set your model to train mode.
loss_record = []
# tqdm is a package to visualize your training progress.
# tqdm用在dataloader上其实是对每个batch和batch总数做的进度条
train_pbar = tqdm(train_loader, position=0, leave=True)
for x, y in train_pbar:
optimizer.zero_grad() # Set gradient to zero.
# x.to(device)将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU上去,
# 之后的运算都在GPU上进行。
x, y = x.to(device), y.to(device) # Move your data to device.
pred = model(x)
loss = criterion(pred, y)
loss.backward() # Compute gradient(backpropagation).
optimizer.step() # Update parameters.
step += 1
loss_record.append(loss.detach().item())
# Display current epoch number and loss on tqdm progress bar.
train_pbar.set_description(f'Epoch [{epoch + 1}/{n_epochs}]')
train_pbar.set_postfix({'loss': loss.detach().item()})
mean_train_loss = sum(loss_record) / len(loss_record)
writer.add_scalar('Loss/train', mean_train_loss, step)
model.eval() # Set your model to evaluation mode.
loss_record = []
for x, y in valid_loader:
x, y = x.to(device), y.to(device)
# 不再进行梯度计算
# 把模型用在验证集上 并计算损失
with torch.no_grad():
pred = model(x)
loss = criterion(pred, y)
loss_record.append(loss.item())
mean_valid_loss = sum(loss_record) / len(loss_record)
print(f'Epoch [{epoch + 1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')
writer.add_scalar('Loss/valid', mean_valid_loss, step)
# 保存训练的最好结果对应的模型参数
if mean_valid_loss < best_loss:
best_loss = mean_valid_loss
torch.save(model.state_dict(), config['save_path']) # Save your best model
print('Saving model with loss {:.3f}...'.format(best_loss))
early_stop_count = 0
else:
early_stop_count += 1
if early_stop_count >= config['early_stop']:
print('\nModel is not improving, so we halt the training session.')
return
Configurations
# 参数配置
# 用GPU跑
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 字典设置参数
config = {
'seed': 5201314, # Your seed number, you can pick your lucky number. :)
'select_all': True, # Whether to use all features.
'valid_ratio': 0.2, # validation_size = train_size * valid_ratio
'n_epochs': 3000, # Number of epochs.
'batch_size': 256,
'learning_rate': 1e-5,
'early_stop': 400, # If model has not improved for this many consecutive epochs, stop training.
'save_path': './models/model.ckpt' # Your model will be saved here.
}
Dataloader
# Set seed for reproducibility
same_seed(config['seed'])
# 准备验证集和训练集数据
# train_data size: 2699 x 118 (id + 37 states + 16 features x 5 days)
# test_data size: 1078 x 117 (without last day's positive rate)
# 读取文件中的数据
train_data, test_data = pd.read_csv('./covid.train.csv').values, pd.read_csv('./covid.test.csv').values
# 无覆盖的随机划分数据集
train_data, valid_data = train_valid_split(train_data, config['valid_ratio'], config['seed'])
# Print out the data size.
print(f"""train_data size: {train_data.shape}
valid_data size: {valid_data.shape}
test_data size: {test_data.shape}""")
# Select features
x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config['select_all'])
# Print out the number of features.
print(f'number of features: {x_train.shape[1]}')
# #生成dataset实例
train_dataset, valid_dataset, test_dataset = COVID19Dataset(x_train, y_train), \
COVID19Dataset(x_valid, y_valid), \
COVID19Dataset(x_test)
# Pytorch data loader loads pytorch dataset into batches.
# 划分成多个batches 提高训练效率
# pin_memory默认false,打开后更快
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
valid_loader = DataLoader(valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)
Start training!
# 开始训练
model = My_Model(input_dim=x_train.shape[1]).to(device) # put your model and data on the same computation device.
trainer(train_loader, valid_loader, model, config, device)
Testing
# 用训练好的模型进行预测并保存数据
def save_pred(preds, file):
''' Save predictions to specified file '''
with open(file, 'w') as fp:
writer = csv.writer(fp)
writer.writerow(['id', 'tested_positive'])
for i, p in enumerate(preds):
writer.writerow([i, p])
model = My_Model(input_dim=x_train.shape[1]).to(device)
model.load_state_dict(torch.load(config['save_path']))
preds = predict(test_loader, model, device)
save_pred(preds, 'pred.csv')