- 参考论文:Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique
- 笔记记录:陈亦新
目的
Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs).
PETCT可以很好的在肺结节当中展示出很好的sensitivity。但是特异度,也就是会识别出较多的FP假阳性样本。因为与正常组织接触的nodule比较难识别。因此使用卷积的方式,来降低FP的数量。
方法
The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using an active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines.
比较简单,总体方案是CT+PET的数据来检测肺结节。在CT图像中,用某种方法在CT图像上检测出一个区域,然后在将这个区域放到PET的图像上进行合并。
消除FP的策略就是使用集成的方法。使用CNN提取特征+使用轮廓提取特征(如何使用暂时不知道)。然后两个特征合并之后,再用两个不同的分类器来进行分类。一个是基于规则的,一个是基于支持向量机的。
先用CT图像做边缘检测,但是这个策略感觉不是很鲁棒。如果CT质量较差一点就会有一些问题出现了。不过这一步并不需要很精确,所以应该不影响。
结果
作者用了104个PET/CT的图片。sensitivity是97.2%,但是有着72.8的FP/case。经过这个方法处理之后,sensitivity下降到90.2%,但是只有4.9FP/case。
总共有104个日本男女的数据。其中在84个病人当中检测到183个结节。
但是不知道为啥后面就说只有181个结节了,在文中还没找到描述的地方。
估计就是传统的方法识别结节的假阳太多,总共识别出来了7575个假阳结节。下图为假阳结节的例子:
此外,还存在一些情况,就是CT可以看到结节然后PET看不到的情况。如下图所示:
我不是学医的,不太懂。查询资料后,可能是因为一些良性的肺结节可能是钙化点等,反正不是高代谢的肿瘤细胞,那PET看不出来也正常。