题目三:
思路
如何使用最少的弓箭呢?
直觉上来看,貌似只射重叠最多的气球,用的弓箭一定最少,那么有没有当前重叠了三个气球,我射两个,留下一个和后面的一起射这样弓箭用的更少的情况呢?
尝试一下举反例,发现没有这种情况。
那么就试一试贪心吧!局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。
算法确定下来了,那么如何模拟气球射爆的过程呢?是在数组中移除元素还是做标记呢?
如果真实的模拟射气球的过程,应该射一个,气球数组就remove一个元素,这样最直观,毕竟气球被射了。
但仔细思考一下就发现:如果把气球排序之后,从前到后遍历气球,被射过的气球仅仅跳过就行了,没有必要让气球数组remote气球,只要记录一下箭的数量就可以了。
以上为思考过程,已经确定下来使用贪心了,那么开始解题。
为了让气球尽可能的重叠,需要对数组进行排序。
那么按照气球起始位置排序,还是按照气球终止位置排序呢?
其实都可以!只不过对应的遍历顺序不同,我就按照气球的起始位置排序了。
既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。
从前向后遍历遇到重叠的气球了怎么办?
如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭。
以题目示例: [[10,16],[2,8],[1,6],[7,12]]为例,如图:(方便起见,已经排序)
可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。
var findMinArrowShots = function(points) {
if (points.length === 0) return 0
points.sort((a, b) => a[0] - b[0]) // points 不为空至少需要一支箭
let result = 1
for (let i = 1; i < points.length; i++) {
if (points[i][0] > points[i - 1][1]) { // 气球i和气球i-1不挨着,注意这里不是>=
result++ // 需要一支箭
} else { // 气球i和气球i-1挨着
points[i][1] = Math.min(points[i - 1][1], points[i][1]) // 更新重叠气球最小右边界
}
}
return result
};
注意事项
注意题目中说的是:满足 xstart ≤ x ≤ xend,则该气球会被引爆。那么说明两个气球挨在一起不重叠也可以一起射爆,
所以代码中 if (points[i][0] > points[i - 1][1]) 不能是>=
#总结
这道题目贪心的思路很简单也很直接,就是重复的一起射了,但本题我认为是有难度的。
就算思路都想好了,模拟射气球的过程,很多同学真的要去模拟了,实时把气球从数组中移走,这么写的话就复杂了。
而且寻找重复的气球,寻找重叠气球最小右边界,其实都有代码技巧。
贪心题目有时候就是这样,看起来很简单,思路很直接,但是一写代码就感觉贼复杂无从下手。
这里其实是需要代码功底的,那代码功底怎么练?