持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第18天,点击查看活动详情
36.有效的数独
来源:力扣(LeetCode)
请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
- 数字 1-9 在每一行只能出现一次。
- 数字 1-9 在每一列只能出现一次。
- 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
注意:
- 一个有效的数独(部分已被填充)不一定是可解的。
- 只需要根据以上规则,验证已经填入的数字是否有效即可。
- 空白格用
'.'表示。
示例 1:
输入:board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:true
示例 2:
输入:board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:false
解释:除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
提示:
- board.length == 9
- board[i].length == 9
- board[i][j] 是一位数字(1-9)或者
'.'
解法
- 循环遍历即可,为了避免同一行同一列或者同一个九宫格中有相同的元素,可以采用三个set列表,表示每行,每列,每个九宫格中出现的元素,遍历到新的元素的时候,先看看是否在这些对应的集合中出现过,如果出现过,返回False, 如果没有出现过,将该元素加入到对应的集合中,并继续遍历,最终返回True。
- 这里注意:当遍历到某点
(i,j)时,辨别其是第几个九宫格的计算公式为:
代码实现
遍历+剪枝
python实现
class Solution:
def isValidSudoku(self, board: List[List[str]]) -> bool:
self.rows = [set() for _ in range(9)]
self.cols = [set() for _ in range(9)]
self.boards = [set() for _ in range(9)]
for i in range(9):
for j in range(9):
ele = board[i][j]
if ele == '.':
continue
index = i // 3 * 3 + j // 3
if ele in self.rows[i] or ele in self.cols[j] or ele in self.boards[index]:
return False
self.rows[i].add(ele)
self.cols[j].add(ele)
self.boards[index].add(ele)
return True
c++实现
class Solution {
public:
bool isValidSudoku(vector<vector<char>>& board) {
vector<set<char>> rows(9);
vector<set<char>> cols(9);
vector<set<char>> boards(9);
int m = board.size(), n = board[0].size();
for(int i=0; i<m; i++) {
for(int j=0; j<n; j++) {
char ele = board[i][j];
int index = i/3*3 + j/3;
if (ele == '.') continue;
if (rows[i].count(ele) != 0 || cols[j].count(ele) != 0 || boards[index].count(ele) != 0) return false;
rows[i].insert(ele);
cols[j].insert(ele);
boards[index].insert(ele);
}
}
return true;
}
};
复杂度分析
- 时间复杂度:
- 空间复杂度: