【算法29天:Day29】第七章回溯算法 LeetCode 全排列II(47)

49 阅读2分钟

题目三:

image.png

这道题目和46.全排列 (opens new window)的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列

这里又涉及到去重了。

去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

47.全排列II1

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

拓展

大家发现,去重最为关键的代码为:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

如果改成 used[i - 1] == true, 也是正确的! ,去重代码如下:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

这是为什么呢,就是上面我刚说的,如果要对树层中前一位去重,就用used[i - 1] == false,如果要对树枝前一位去重用used[i - 1] == true

对于排列问题,树层上去重和树枝上去重,都是可以的,但是树层上去重效率更高!

这么说是不是有点抽象?

来来来,我就用输入: [1,1,1] 来举一个例子。

树层上去重(used[i - 1] == false),的树形结构如下:

image.png

树枝上去重(used[i - 1] == true)的树型结构如下:

47.全排列II3

大家应该很清晰的看到,树层上对前一位去重非常彻底,效率很高,树枝上对前一位去重虽然最后可以得到答案,但是做了很多无用搜索。

总结

这道题其实还是用了我们之前讲过的去重思路,但有意思的是,去重的代码中,这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

和这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

都是可以的,这也是很多同学做这道题目困惑的地方,知道used[i - 1] == false也行而used[i - 1] == true也行,但是就想不明白为啥。

所以我通过举[1,1,1]的例子,把这两个去重的逻辑分别抽象成树形结构,大家可以一目了然:为什么两种写法都可以以及哪一种效率更高!

完整代码如下:

var permuteUnique = function(nums) {
    let result = []
    let path = []
    nums.sort((a, b) => a - b)
    let used = new Array(nums.length).fill(false)
    const backtracking = (nums, used) => {
        if (path.length === nums.length) {
            result.push([...path])
            return
        }

        for (let i = 0; i < nums.length; i++) {
            if (i > 0 && nums[i] === nums[i - 1] && used[i - 1] === false) {
                continue
            }
            if (used[i] === false) {
                path.push(nums[i])
                used[i] = true
                backtracking(nums, used)
                used[i] = false
                path.pop()    
            }
        }
    }
    backtracking(nums, used)
    return result
};