R语言广义线性模型索赔频率预测:过度分散、风险暴露数和树状图可视化|附代码数据

184 阅读12分钟

持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第25天,点击查看活动详情

全文下链接:tecdat.cn/?p=13963

在精算科学和保险费率制定中,考虑到风险敞口可能是一场噩梦。不知何故,简单的结果是因为计算起来更加复杂,只是因为我们必须考虑到暴露是一个异构变量这一事实。

保险费率制定中的风险敞口可以看作是审查数据的问题(在我的数据集中,风险敞口始终小于1,因为观察结果是合同,而不是保单持有人),利息变量是未观察到的变量,因为我们必须为保险合同定价一年(整年)的保险期。因此,我们必须对保险索赔的年度频率进行建模。

在我们的数据集中,我们考虑索赔总数与总风险承担比率。例如,如果我们考虑泊松过程

考虑以下数据集,

>  nombre=rbind(nombre1,nombre2)>  baseFREQ = merge(contrat,nombre)

在这里,我们确实有两个感兴趣的变量,即每张合约的敞口,

>  E <- baseFREQ$exposition
和(观察到的)索赔数量(在该时间段内)
>  Y <- baseFREQ$nbre
无需协变量,可以计算每个合同的平均(每年)索赔数量以及相关的方差
> (mean=weighted.mean(Y/E,E))[1] 0.07279295> (variance=sum((Y-mean*E)^2)/sum(E))[1] 0.08778567
看起来方差(略)大于平均值(我们将在几周后看到如何更正式地对其进行测试)。

可以在保单持有人居住的地区添加协变量,例如人口密度


Density, zone 11 average = 0.07962411  variance = 0.08711477Density, zone 21 average = 0.05294927  variance = 0.07378567Density, zone 22 average = 0.09330982  variance = 0.09582698Density, zone 23 average = 0.06918033  variance = 0.07641805Density, zone 24 average = 0.06004009  variance = 0.06293811Density, zone 25 average = 0.06577788  variance = 0.06726093Density, zone 26 average = 0.0688496   variance = 0.07126078Density, zone 31 average = 0.07725273  variance = 0.09067Density, zone 41 average = 0.03649222  variance = 0.03914317Density, zone 42 average = 0.08333333  variance = 0.1004027Density, zone 43 average = 0.07304602  variance = 0.07209618Density, zone 52 average = 0.06893741  variance = 0.07178091Density, zone 53 average = 0.07725661  variance = 0.07811935Density, zone 54 average = 0.07816105  variance = 0.08947993Density, zone 72 average = 0.08579731  variance = 0.09693305Density, zone 73 average = 0.04943033  variance = 0.04835521Density, zone 74 average = 0.1188611   variance = 0.1221675Density, zone 82 average = 0.09345635  variance = 0.09917425Density, zone 83 average = 0.04299708  variance = 0.05259835Density, zone 91 average = 0.07468126  variance = 0.3045718Density, zone 93 average = 0.08197912  variance = 0.09350102Density, zone 94 average = 0.03140971  variance = 0.04672329
可以可视化该信息
> plot(meani,variancei,cex=sqrt(Ei),col="grey",pch=19, > points(meani,variancei,cex=sqrt(Ei))
 

圆圈的大小与组的大小有关(面积与组内的总暴露量成正比)。第一个对角线对应于泊松模型,即方差应等于均值。也可以考虑其他协变量

汽车品牌

也可以将驾驶员的年龄视为分类变量


点击标题查阅往期内容

R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据

左右滑动查看更多

01

02

03

04

让我们更仔细地看一下不同年龄段的人,

在右边,我们可以观察到年轻的(没有经验的)驾驶员。那是预料之中的。但是有些类别  低于  第一个对角线:期望的频率很大,但方差不大。也就是说,我们  可以肯定的  是,年轻的驾驶员会发生更多的车祸。相反,它不是一个异类:年轻的驾驶员可以看作是一个相对同质的类,发生车祸的频率很高。

使用原始数据集(在这里,我仅使用具有50,000个客户的子集),我们获得了以下图形:

由于圈正在从18岁下降到25岁,因此具有明显的经验影响。

同时我们可以发现有可能将曝光量视为标准变量,并查看系数实际上是否等于1。如果没有任何协变量,




Call:glm(formula = Y ~ log(E), family = poisson("log"))

Deviance Residuals:Min       1Q   Median       3Q      Max-0.3988  -0.3388  -0.2786  -0.1981  12.9036

Coefficients:Estimate Std. Error z value Pr(>|z|)(Intercept) -2.83045    0.02822 -100.31   <2e-16 ***log(E)       0.53950    0.02905   18.57   <2e-16 ***---Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12931  on 49999  degrees of freedomResidual deviance: 12475  on 49998  degrees of freedomAIC: 16150

Number of Fisher Scoring iterations: 6

也就是说,该参数显然严格小于1。它与重要性均不相关,

Linear hypothesis test

Hypothesis:log(E) = 1

Model 1: restricted modelModel 2: Y ~ log(E)

Res.Df Df  Chisq Pr(>Chisq)1  499992  49998  1 251.19  < 2.2e-16 ***---Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

我也没有考虑协变量,





Deviance Residuals:Min       1Q   Median       3Q      Max-0.7114  -0.3200  -0.2637  -0.1896  12.7104

Coefficients:Estimate Std. Error z value Pr(>|z|)(Intercept)                  -14.07321  181.04892  -0.078 0.938042log(exposition)                0.56781    0.03029  18.744  < 2e-16 ***carburantE                    -0.17979    0.04630  -3.883 0.000103 ***as.factor(ageconducteur)19    12.18354  181.04915   0.067 0.946348as.factor(ageconducteur)20    12.48752  181.04902   0.069 0.945011

因此,假设暴露是此处的外生变量可能是一个过强的假设。

接下来我们开始讨论建模索赔频率时的过度分散。在前面,我讨论了具有不同暴露程度的经验方差的计算。但是我只使用一个因素来计算类。当然,可以使用更多的因素。例如,使用因子的笛卡尔积


Class D A (17,24]  average = 0.06274415  variance = 0.06174966Class D A (24,40]  average = 0.07271905  variance = 0.07675049Class D A (40,65]  average = 0.05432262  variance = 0.06556844Class D A (65,101] average = 0.03026999  variance = 0.02960885Class D B (17,24]  average = 0.2383109   variance = 0.2442396Class D B (24,40]  average = 0.06662015  variance = 0.07121064Class D B (40,65]  average = 0.05551854  variance = 0.05543831Class D B (65,101] average = 0.0556386   variance = 0.0540786Class D C (17,24]  average = 0.1524552   variance = 0.1592623Class D C (24,40]  average = 0.0795852   variance = 0.09091435Class D C (40,65]  average = 0.07554481  variance = 0.08263404Class D C (65,101] average = 0.06936605  variance = 0.06684982Class D D (17,24]  average = 0.1584052   variance = 0.1552583Class D D (24,40]  average = 0.1079038   variance = 0.121747Class D D (40,65]  average = 0.06989518  variance = 0.07780811Class D D (65,101] average = 0.0470501   variance = 0.04575461Class D E (17,24]  average = 0.2007164   variance = 0.2647663Class D E (24,40]  average = 0.1121569   variance = 0.1172205Class D E (40,65]  average = 0.106563    variance = 0.1068348Class D E (65,101] average = 0.1572701   variance = 0.2126338Class D F (17,24]  average = 0.2314815   variance = 0.1616788Class D F (24,40]  average = 0.1690485   variance = 0.1443094Class D F (40,65]  average = 0.08496827  variance = 0.07914423Class D F (65,101] average = 0.1547769   variance = 0.1442915Class E A (17,24]  average = 0.1275345   variance = 0.1171678Class E A (24,40]  average = 0.04523504  variance = 0.04741449Class E A (40,65]  average = 0.05402834  variance = 0.05427582Class E A (65,101] average = 0.04176129  variance = 0.04539265Class E B (17,24]  average = 0.1114712   variance = 0.1059153Class E B (24,40]  average = 0.04211314  variance = 0.04068724Class E B (40,65]  average = 0.04987117  variance = 0.05096601Class E B (65,101] average = 0.03123003  variance = 0.03041192Class E C (17,24]  average = 0.1256302   variance = 0.1310862Class E C (24,40]  average = 0.05118006  variance = 0.05122782Class E C (40,65]  average = 0.05394576  variance = 0.05594004Class E C (65,101] average = 0.04570239  variance = 0.04422991Class E D (17,24]  average = 0.1777142   variance = 0.1917696Class E D (24,40]  average = 0.06293331  variance = 0.06738658Class E D (40,65]  average = 0.08532688  variance = 0.2378571Class E D (65,101] average = 0.05442916  variance = 0.05724951Class E E (17,24]  average = 0.1826558   variance = 0.2085505Class E E (24,40]  average = 0.07804062  variance = 0.09637156Class E E (40,65]  average = 0.08191469  variance = 0.08791804Class E E (65,101] average = 0.1017367   variance = 0.1141004Class E F (17,24]  average = 0           variance = 0Class E F (24,40]  average = 0.07731177  variance = 0.07415932Class E F (40,65]  average = 0.1081142   variance = 0.1074324Class E F (65,101] average = 0.09071118  variance = 0.1170159

同样,可以将方差与平均值作图,

> plot(vm,vv,cex=sqrt(ve),col="grey",pch=19,+ xlab="Empirical average",ylab="Empirical variance")> points(vm,vv,cex=sqrt(ve))> abline(a=0,b=1,lty=2)

一种替代方法是使用树。树可以从其他变量获得,但它应该是相当接近我们理想的模型。在这里,我确实使用了整个数据库(超过60万行)

树如下

> plot(T)> text(T)

现在,每个分支都定义了一个类,可以使用它来定义一个类。应该被认为是同质的。


Class  6 average =   0.04010406  variance = 0.04424163Class  8 average =   0.05191127  variance = 0.05948133Class  9 average =   0.07442635  variance = 0.08694552Class  10 average =  0.4143646   variance = 0.4494002Class  11 average =  0.1917445   variance = 0.1744355Class  15 average =  0.04754595  variance = 0.05389675Class  20 average =  0.08129577  variance = 0.0906322Class  22 average =  0.05813419  variance = 0.07089811Class  23 average =  0.06123807  variance = 0.07010473Class  24 average =  0.06707301  variance = 0.07270995Class  25 average =  0.3164557   variance = 0.2026906Class  26 average =  0.08705041  variance = 0.108456Class  27 average =  0.06705214  variance = 0.07174673Class  30 average =  0.05292652  variance = 0.06127301Class  31 average =  0.07195285  variance = 0.08620593Class  32 average =  0.08133722  variance = 0.08960552Class  34 average =  0.1831559   variance = 0.2010849Class  39 average =  0.06173885  variance = 0.06573939Class  41 average =  0.07089419  variance = 0.07102932Class  44 average =  0.09426152  variance = 0.1032255Class  47 average =  0.03641669  variance = 0.03869702Class  49 average =  0.0506601   variance = 0.05089276Class  50 average =  0.06373107  variance = 0.06536792Class  51 average =  0.06762947  variance = 0.06926191Class  56 average =  0.06771764  variance = 0.07122379Class  57 average =  0.04949142  variance = 0.05086885Class  58 average =  0.2459016   variance = 0.2451116Class  59 average =  0.05996851  variance = 0.0615773Class  61 average =  0.07458053  variance = 0.0818608Class  63 average =  0.06203737  variance = 0.06249892Class  64 average =  0.07321618  variance = 0.07603106Class  66 average =  0.07332127  variance = 0.07262425Class  68 average =  0.07478147  variance = 0.07884597Class  70 average =  0.06566728  variance = 0.06749411Class  71 average =  0.09159605  variance = 0.09434413Class  75 average =  0.03228927  variance = 0.03403198Class  76 average =  0.04630848  variance = 0.04861813Class  78 average =  0.05342351  variance = 0.05626653Class  79 average =  0.05778622  variance = 0.05987139Class  80 average =  0.0374993   variance = 0.0385351Class  83 average =  0.06721729  variance = 0.07295168Class  86 average =  0.09888492  variance = 0.1131409Class  87 average =  0.1019186   variance = 0.2051122Class  88 average =  0.05281703  variance = 0.0635244Class  91 average =  0.08332136  variance = 0.09067632Class  96 average =  0.07682093  variance = 0.08144446Class  97 average =  0.0792268   variance = 0.08092019Class  99 average =  0.1019089   variance = 0.1072126Class  100 average = 0.1018262   variance = 0.1081117Class  101 average = 0.1106647   variance = 0.1151819Class  103 average = 0.08147644  variance = 0.08411685Class  104 average = 0.06456508  variance = 0.06801061Class  107 average = 0.1197225   variance = 0.1250056Class  108 average = 0.0924619   variance = 0.09845582Class  109 average = 0.1198932   variance = 0.1209162

在这里,当根据索赔的经验平均值绘制经验方差时,我们得到

在这里,我们可以识别剩余异质性的类。

点击文末 “阅读原文”

获取全文完整代码数据资料。

本文选自《R语言广义线性模型索赔频率预测:过度分散、风险暴露数和树状图可视化》。

点击标题查阅往期内容

R语言通过伽玛与对数正态分布假设下的广义线性模型对大额索赔进行评估预测

R语言使用链梯法Chain Ladder和泊松定律模拟和预测未来赔款数据

R语言对巨灾风险下的再保险合同定价研究案例:广义线性模型和帕累托分布Pareto distributions分析

R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分析保险资金投资组合信用风险敞口

R语言预测人口死亡率:用李·卡特(Lee-Carter)模型、非线性模型进行平滑估计

R语言中GLM(广义线性模型),非线性和异方差可视化分析

NBA体育决策中的数据挖掘分析:线性模型和蒙特卡罗模拟

基于R语言的lmer混合线性回归模型

Python用PyMC3实现贝叶斯线性回归模型

R语言中Gibbs抽样的Bayesian简单线性回归

R语言线性判别分析(LDA),二次判别分析(QDA)和正则判别分析(RDA)

R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析

SPSS中的等级线性模型Multilevel linear models研究整容手术数据

R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归

R语言用线性模型进行预测: 加权泊松回归,普通最小二乘,加权负二项式模型,多重插补缺失值