持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第18天,点击查看活动详情
1 神经网络简介
人工神经网络(Artificial Neural Netork,即ANN)是由简单神经元经过相互连接形成网状结构,通过调节各连接的权重值改变连接的强度,进而实现感知判断。
传统神经网络结构比较简单,训练时随机初始化输入参数,并开启循环计算输出结果,与实际结果进行比较从而得到损失函数,并更新变量使损失函数结果值极小,当达到误差阈值时即可停止循环。
神经网络的训练目的是希望能够学习到一个模型,实现输出一个期望的目标值。学习的方式是在外界输入样本的刺激下不断改变网络的连接权值。传统神经网络主要分为一下几类:前馈型神经网络,反馈型神经网络和自组织神经网络。这几类网络具有不同的学习训练算法,可以归结为监督型学习算法和非监督型学习算法。
前馈型神经网络
前馈神经网络(Feed Forward Neural Network)是一种单向多层的网络结构,即信息是从输入层开始,逐层向一个方向传递,一直到输出层结束。所谓的“前馈”是指输入信号的传播方向为前向,在此过程中并不调整各层的权值参数,而反传播时是将误差逐层向后传递,从而实现使用权值参数对特征的记忆,即通过反向传播(BP)算法来计算各层网络中神经元之间边的权重。BP算法具有非线性映射能力,理论上可逼近任意连续函数,从而实现对模型的学习。
BP神经网络
BP (Back Propagation)神经网络也是前馈神经网络,只是它的参数权重值是由反向传播学习算法进行调整的。
BP神经网络模型拓扑结构包括输入层、隐层和输出层,利用激活函数来实现从输入到输出的任意非线性映射,从而模拟各层神经元之间的交互激活函数须满足处处可导的条件。例如,Sigmoid函数连续可微,求导合适,单调递增,输出值是0~1之间的连续量,这些特点使其适合作为神经网络的激活函数。