基本元器件 - 晶体三级管

445 阅读3分钟

基本元器件 - 晶体三级管

晶体三极管是一种 电流控电流 的元器件。

区分极性

除基极外,带箭头是发射极,不带则是集电极。箭头朝外是 NPN,指向里面是 PNP.

不同封装引脚辨认

img

基本电流关系

img

三极管电流方向依托于发射级电流方向。

  • NPN:发射级流出,所以基极和集电极都是流入。
  • PNP:发射级流入,所以基极和集电极都是流出。

规律:

  1. 满足基尔霍夫电流定律

    iB+iC=iEi_B + i_C = i_E
  2. 处于放大状态下,集电极电流只受控于基极电流

    (iC=βiB)\left(i_{C}=\beta i_{B}\right)

    ,与集电极发射极间的电压无关。

  3. 基极与发射极导通时,分压值 Ube约为 0.7V

所以三极管就是一个受控电流源,由小电流 i_Bi**B 去控大电流 i_Ci**C,取决于晶体管恒定的放大倍数 \betaβ

所以,

iE=(1+β)iB=1+ββiCi_E=(1+\beta)i_B = \frac{1+\beta}{\beta}·i_C

输出伏安特性

img

如图,三极管的输出伏安特性分以下几个区域:

  • 放大区:在此区域内,晶体管的 i_C几乎不随 u_{CE}变化,近似满足

    iC=βiBi_{C}=\beta i_{B}
  • 饱和区:在此区域内,晶体管的 i_C随着 u {CE}增大而增大。一般认为当 u{CE} 小于饱和压降 U_{CES}(一般为 0.3 V)时,晶体管工作在饱和区。

  • 截止区:即 I_B = 0的那根曲线。但此时 i_C 并不为 0,因为存在与 u_{CE} 相关的漏电流。截止区代表晶体管处于几乎没有任何电流进出的状态,近似于完全关闭。

如果我们想用数学公式描述伏安特性,那么需要将曲线简化一下:

img

简化后,可以这么认为:

  • 放大区:满足iC=βiB,uCE无关。放大区:满足 i_{C}=\beta i_{B},与 u_{CE} 无关。
  • 饱和区:iC随着uCE增大而增大,近似为线性。饱和区:i_C 随着 u_{CE} 增大而增大,近似为线性。
  • UCES垂直线:饱和区与放大区的分界线。U _{CES}垂直线:饱和区与放大区的分界线。

阻容耦合放大电路

晶体管的工作状态

  • 截止状态

    • 截止状态:指基极未产生明显电流IBQ非常小导致ICQ也很小,集电极与发射极之间相当于开路。IBQ=0,ICQ=0,IEQ=IBQ+ICQ=0。发射结零偏/反偏、集电结反偏。截止状态:指基极未产生明显电流I_{BQ}非常小导致 I_{CQ}也很小,集电极与发射极之间相当于开路。 I_{BQ} = 0, I_{CQ} = 0, I_{EQ} = I_{BQ}+I_{CQ}=0。发射结零偏 / 反偏、集电结反偏。
  • 放大状态

    • 放大状态:指晶体管处于IBQ合适,且满足ICQ=βIBQ,IEQ=(1+β)IBQ,IBQ=VCCUBERB放大状态:指晶体管处于 I_{BQ}合适,且满足 I_{CQ} = \beta I_{BQ},I_{EQ} = (1+ \beta)I_{BQ}, I_{BQ} = \frac{V_{CC}-U_{BE}}{R_B}
    • 发射结正偏、集电结反偏。 这是模电最常用的状态。

  • 饱和状态

    • ICQ<βIBQ,但还是随UCEQ变化。IBQICQ都很大,ICQ已经不完全受IBQ控制,且UCEQ所占的电压很小。只要UCEQ<UCES,就进入饱和状态。此时,再增加IBQICQ也几乎不再增加。I_{CQ} < \beta I_{BQ},但还是随 U_{CEQ}变化。 I_{BQ}和 I_{CQ}都很大,I_{CQ}已经不完全受 I_{BQ}控制,且 U_{CEQ}所占的电压很小。 只要 U_{CEQ} < U_{CES},就进入饱和状态。 此时,再增加 I_{BQ},I_{CQ}也几乎不再增加。
    • 在模电中应该避免进入饱和状态,而在数电中则期望进入饱和或截至状态。倒置状态集电极和发射极接反了。虽然也不是不能用,但是会造成β下降严重。饱和状态就好比水龙头打开了,但水箱里没水,此时就是有多少水来多少水。发射结反偏,集电结正偏。在模电中应该避免进入饱和状态,而在数电中则期望进入饱和或截至状态。 倒置状态 集电极和发射极接反了。虽然也不是不能用,但是会造成 \beta下降严重。 饱和状态就好比水龙头打开了,但水箱里没水,此时就是有多少水来多少水。 发射结反偏,集电结正偏。
  • 倒置状态

    • 集电极和发射极接反了。虽然也不是不能用,但是会造成 \betaβ 下降严重。
    • 饱和状态就好比水龙头打开了,但水箱里没水,此时就是有多少水来多少水。
    • 发射结反偏,集电结正偏。

判断工作状态有三种方法,分别是估算法、函数求解法、图解法。估算法的核心是假设 U_{BEQ}U**BEQ 约等于 0.7 V,但有误差(电压越大误差越小);函数求解法必须知道输入、输出伏安特性的数学表达式,通过方程求解,一般不会用到;图解法的核心是用伏安特性图和另一直线的交点,求解静态工作点的位置,然后目测结果。

三极管的主要参数

  • 电流放大系数β:一般为10100倍,但在应用中取3080倍为宜(太小放大不明显,太大工作不稳定)。电流放大系数 \beta:一般为 10-100 倍,但在应用中取 30-80 倍为宜(太小放大不明显,太大工作不稳定)。
  • 集电极最大允许电流ICM:超过可能导致烧坏。集电极最大允许电流 I_{CM}:超过可能导致烧坏。
  • 集电极最大允许功耗PCM集电极最大允许功耗 P_{CM}
  • 集电极发射极间反向击穿电压VCE集电极发射极间反向击穿电压 V_{CE}

判断三极管的工作状态

估算法

img

其中的估算静态工作点,即用简单的方法大致估算出晶体管电路的静态(各支路电流、各节点电位)。核心就是假设UBEQ约等于0.7V(一般要算出ICQUCEQ,具体步骤如下:其中的估算静态工作点,即用简单的方法大致估算出晶体管电路的静态(各支路电流、各节点电位)。核心就是假设 U_{BEQ}约等于 0.7 V(一般要算出 I_{CQ}和 U_{CEQ},具体步骤如下:
1.根据UBEQ=0.7V,算出IBQ1.根据 U_{BEQ} = 0.7 V,算出 I_{BQ}
2.假设处于放大状态,即ICQ=βIBQ,求解出UCEQ2.假设处于放大状态,即 I_{CQ} = \beta I_{BQ},求解出 U_{CEQ}
3.此时如果UCEQ>=0.3V,则假设成立,晶体管处于放大状态,ICQUCEQ为所求。3.此时如果 U_{CEQ} >= 0.3 V,则假设成立,晶体管处于放大状态,I_{CQ}与 U_{CEQ}为所求。
4.如果UCEQ<0.3V,则假设不成立,晶体管处于饱和状态。4.如果 U_{CEQ} < 0.3 V,则假设不成立,晶体管处于饱和状态。

图解法

图解法的核心,是用伏安特性图和另一直线的交点,求解静态工作点的位置,然后目测结果。

基本放大电路

img

如图,各部分的作用:

  • C_1/C_2:隔直通交。排除 U_{CC}的影响。取值几微法到几十微法。
  • U_{CC}:为电路功能;提供合适的静态工作点。
  • R_B:提供合适的 I_B,取值一般为几十欧到几百千欧。
  • R_C:取值几千欧到几十千欧。

分析:

  • 总基极电压,UBE=UBEQ+ui总基极电压,U_{BE} = U_{BEQ}+u_i
  • 总基极电流,iB=IBQ+ib总基极电流, i_B=I_{BQ}+i_b
  • 总集电极电流,iC=ICQ+ic总集电极电流,i_C=I_{CQ}+i_c
  • 总的,uCE=VCCiCRC=VCC(ICQ+ic)R=UCEQ+(iCRC)总的, u_CE=V_{CC}-{i_C}{R_C}=V_{CC}-(I_{CQ}+i_c)R=U_{CEQ}+({-i_C}{R_C})

此电路的不足:虽结构简单,但静态工作点不稳定,受各元器件影响大。