你可以使用以下方法从R中的lm()函数中提取残差标准误差以及各个回归系数的标准误差。
方法1:提取残差标准误差
#extract residual standard error of regression model
summary(model)$sigma
方法2:提取单个回归系数的标准误差
#extract standard error of individual regression coefficients
sqrt(diag(vcov(model)))
下面的例子说明了如何在实践中使用每种方法。
例子:从R语言的lm()中提取标准误差
假设我们在R中拟合了以下的多元线性回归模型:
#create data frame
df <- data.frame(rating=c(67, 75, 79, 85, 90, 96, 97),
points=c(8, 12, 16, 15, 22, 28, 24),
assists=c(4, 6, 6, 5, 3, 8, 7),
rebounds=c(1, 4, 3, 3, 2, 6, 7))
#fit multiple linear regression model
model <- lm(rating ~ points + assists + rebounds, data=df)
我们可以使用summary()函数来查看整个回归模型的摘要:
#view model summary
summary(model)
Call:
lm(formula = rating ~ points + assists + rebounds, data = df)
Residuals:
1 2 3 4 5 6 7
-1.5902 -1.7181 0.2413 4.8597 -1.0201 -0.6082 -0.1644
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.4355 6.6932 9.926 0.00218 **
points 1.2152 0.2788 4.359 0.02232 *
assists -2.5968 1.6263 -1.597 0.20860
rebounds 2.8202 1.6118 1.750 0.17847
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.193 on 3 degrees of freedom
Multiple R-squared: 0.9589, Adjusted R-squared: 0.9179
F-statistic: 23.35 on 3 and 3 DF, p-value: 0.01396
该模型的残差标准误差为3.193,在输出的标准误差栏中可以看到各个回归系数的标准误差。
为了只提取模型的残差标准误差,我们可以使用以下语法:
#extract residual standard error of regression model
summary(model)$sigma
[1] 3.19339
要想只提取各个回归系数的标准误差,我们可以使用下面的语法:
#extract standard error of individual regression coefficients
sqrt(diag(vcov(model)))
(Intercept) points assists rebounds
6.6931808 0.2787838 1.6262899 1.6117911
注意,这些数值与我们之前在整个回归输出摘要中看到的数值一致。