数据结构和算法的底层思维

151 阅读5分钟

数据结构和算法的底层思维

一生二,二生三,三生万物

1.数据结构的存储方式

数据结构的存储方式只有两种:数组(顺序存储)和链表(链式存储)

这里说的存储方式只有两种是相对数据实际存储在内存存储器而言的,就是说内存储器决定了数据实际是以什么方式存储,就是所为的数据结构的物理结构。

我们看数据结构的书或教材时经常会说数据结构分数据的逻辑结构和物理结构,逻辑结构只是数据从逻辑上的组织方式,其底层都只有两种实现,数组链表

所以我们的散列表、栈、队列、堆、树、图等数据结构,都是属于上层建筑,而数组和链表才是结构基础,

比如说「队列」、「栈」这两种数据结构既可以使用链表也可以使用数组实现。用数组实现,就要处理扩容缩容的问题;用链表实现,没有这个问题,但需要更多的内存空间存储节点指针。
​
「图」的两种表示方法,邻接表就是链表,邻接矩阵就是二维数组。邻接矩阵判断连通性迅速,并可以进行矩阵运算解决一些问题,但是如果图比较稀疏的话很耗费空间。邻接表比较节省空间,但是很多操作的效率上肯定比不过邻接矩阵。
​
「散列表」就是通过散列函数把键映射到一个大数组里。而且对于解决散列冲突的方法,拉链法需要链表特性,操作简单,但需要额外的空间存储指针;线性探查法就需要数组特性,以便连续寻址,不需要指针的存储空间,但操作稍微复杂些。
​
「树」,用数组实现就是「堆」,因为「堆」是一个完全二叉树,用数组存储不需要节点指针,操作也比较简单;用链表实现就是很常见的那种「树」,因为不一定是完全二叉树,所以不适合用数组存储。为此,在这种链表「树」结构之上,又衍生出各种巧妙的设计,比如二叉搜索树、AVL 树、红黑树、区间树、B 树等等,以应对不同的问题。

综上,数据结构种类很多,甚至你也可以发明自己的数据结构,但是底层存储无非数组或者链表,二者的优缺点如下

数组由于是紧凑连续存储,可以随机访问,通过索引快速找到对应元素,而且相对节约存储空间。但正因为连续存储,内存空间必须一次性分配够,所以说数组如果要扩容,需要重新分配一块更大的空间,再把数据全部复制过去,时间复杂度 O(N);而且你如果想在数组中间进行插入和删除,每次必须搬移后面的所有数据以保持连续,时间复杂度 O(N)。

链表因为元素不连续,而是靠指针指向下一个元素的位置,所以不存在数组的扩容问题;如果知道某一元素的前驱和后驱,操作指针即可删除该元素或者插入新元素,时间复杂度 O(1)。但是正因为存储空间不连续,你无法根据一个索引算出对应元素的地址,所以不能随机访问;而且由于每个元素必须存储指向前后元素位置的指针,会消耗相对更多的储存空间。

2.数据结构的基本操作

对于任何数据结构,其基本操作无非遍历 + 访问,再具体一点就是:增删查改。

数据结构种类很多,但它们存在的目的都是在不同的应用场景,尽可能高效地增删查改。话说这不就是数据结构的使命么?

如何遍历 + 访问?我们仍然从最高层来看,各种数据结构的遍历 + 访问无非两种形式:线性的和非线性的。

线性就是 for/while 迭代为代表,非线性就是递归为代表。再具体一步,无非以下几种框架:

数组遍历框架,典型的线性迭代结构:

void traverse(int[] arr){
  for(int i=0;i<arr.length;i++){
    //迭代访问arr[i]
  }
}

链表遍历框架,兼具迭代和递归结构

class ListNode {
    int val;
    ListNode next;
}
​
void traverse(ListNode head) {
    for (ListNode p = head; p != null; p = p.next) {
        // 迭代访问 p.val
    }
}
​
void traverse(ListNode head) {
    // 递归访问 head.val
    traverse(head.next);
}

二叉树遍历框架,典型的非线性递归遍历结构:

class TreeNode {
    int val;
    TreeNode left,right;
}
​
void traverse(TreeNode root){
  traverse(root.left);
  traverse(root.right);
}

所谓框架,就是套路。不管增删查改,这些代码都是永远无法脱离的结构

数据结构是工具,算法是通过合适的工具解决特定问题的方法。也就是说,学习算法之前,最起码得了解那些常用的数据结构,了解它们的特性和缺陷.

3.学习步骤

1、先学习像数组、链表这种基本数据结构的常用算法,比如单链表翻转,前缀和数组,二分搜索等

2、学会基础算法之后,不要急着上来就刷回溯算法、动态规划这类笔试常考题,而应该先刷二叉树,先刷二叉树,先刷二叉树,重要的事情说三遍

4.小结

数据结构的基本存储方式就是链式和顺序两种,基本操作就是增删查改,遍历方式无非迭代和递归。

学完基本算法之后,建议从「二叉树」系列问题开始刷,结合框架思维,把树结构理解到位,然后再去看回溯、动规、分治等算法专题,对思路的理解就会更加深刻

引用:labuladong.gitee.io/algo/1/2/