持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第12天,点击查看活动详情
一、题目描述:
你和你的朋友,两个人一起玩 Nim 游戏:
- 桌子上有一堆石头。
- 你们轮流进行自己的回合, 你作为先手 。
- 每一回合,轮到的人拿掉 1 - 3 块石头。
- 拿掉最后一块石头的人就是获胜者。
假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可以赢,返回 true;否则,返回 false 。
示例 1:
输入:n = 4
输出:false
解释:以下是可能的结果:
1. 移除1颗石头。你的朋友移走了3块石头,包括最后一块。你的朋友赢了。
2. 移除2个石子。你的朋友移走2块石头,包括最后一块。你的朋友赢了。
3.你移走3颗石子。你的朋友移走了最后一块石头。你的朋友赢了。
在所有结果中,你的朋友是赢家。
示例 2:
输入:n = 1
输出:true
示例 3:
输入:n = 2
输出:true
提示:
- 1 <= n <= 2^31 - 1
二、思路分析:
- 反向思考:如果我能赢,那么最后轮到我取石子的时候必须要剩下 1~3 颗石子,这样我才能一把拿完。
- 如果对手拿的时候只剩 4 颗石子,那么无论他怎么拿,总会剩下 1~3 颗石子,我就能赢。
- 要想办法,让我选择的时候还有 5~7 颗石子,这样的话我就有把握让对方不得不面对 4 颗石子。
- 发现规律对方拿4的倍数剩下如果有余,那必定赢, 如果没有余对面赢
三、AC 代码:
class Solution:
def canWinNim(self, n: int) -> bool:
return n % 4 != 0