数组
二分查找
var search = function(nums, target) {
// right是数组最后一个数的下标,num[right]在查找范围内,是左闭右闭区间
let mid, left = 0, right = nums.length - 1;
// 当left=right时,由于nums[right]在查找范围内,所以要包括此情况
while (left <= right) {
// 位运算 + 防止大数溢出
mid = left + ((right - left) >> 1);
// 如果中间数大于目标值,要把中间数排除查找范围,所以右边界更新为mid-1;如果右边界更新为mid,那中间数还在下次查找范围内
if (nums[mid] > target) {
right = mid - 1; // 去左面闭区间寻找
} else if (nums[mid] < target) {
left = mid + 1; // 去右面闭区间寻找
} else {
return mid;
}
}
return -1;
};
移除元素
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。 示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。
示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。
var removeElement = (nums, val) => {
let k = 0;
for(let i = 0;i < nums.length;i++){
if(nums[i] != val){
nums[k++] = nums[i]
}
}
return k;
};
力扣 977.有序数组的平方
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1: 输入:nums = [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变为 [16,1,0,9,100],排序后,数组变为 [0,1,9,16,100]
示例 2: 输入:nums = [-7,-3,2,3,11] 输出:[4,9,9,49,121]
var sortedSquares = function(nums) {
let n = nums.length;
let res = new Array(n).fill(0);
let i = 0, j = n - 1, k = n - 1;
while (i <= j) {
let left = nums[i] * nums[i],
right = nums[j] * nums[j];
if (left < right) {
res[k--] = right;
j--;
} else {
res[k--] = left;
i++;
}
}
return res;
};
力扣209.长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
var minSubArrayLen = function(target, nums) {
// 长度计算一次
const len = nums.length;
let l = r = sum = 0,
res = len + 1; // 子数组最大不会超过自身
while(r < len) {
sum += nums[r++];
// 窗口滑动
while(sum >= target) {
// r始终为开区间 [l, r)
res = res < r - l ? res : r - l;
sum-=nums[l++];
}
}
return res > len ? 0 : res;
};
力扣59.螺旋矩阵II
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:
输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]
var generateMatrix = function(n) {
let startX = startY = 0; // 起始位置
let loop = Math.floor(n/2); // 旋转圈数
let mid = Math.floor(n/2); // 中间位置
let offset = 1; // 控制每一层填充元素个数
let count = 1; // 更新填充数字
let res = new Array(n).fill(0).map(() => new Array(n).fill(0));
while (loop--) {
let row = startX, col = startY;
// 上行从左到右(左闭右开)
for (; col < startY + n - offset; col++) {
res[row][col] = count++;
}
// 右列从上到下(左闭右开)
for (; row < startX + n - offset; row++) {
res[row][col] = count++;
}
// 下行从右到左(左闭右开)
for (; col > startY; col--) {
res[row][col] = count++;
}
// 左列做下到上(左闭右开)
for (; row > startX; row--) {
res[row][col] = count++;
}
// 更新起始位置
startX++;
startY++;
// 更新offset
offset += 2;
}
// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2 === 1) {
res[mid][mid] = count;
}
return res;
};
链表
203.移除链表元素
题意:删除链表中等于给定值 val 的所有节点。
示例 1:
输入:head = [1,2,6,3,4,5,6], val = 6
输出:[1,2,3,4,5]
示例 2:
输入:head = [], val = 1
输出:[]
示例 3:
输入:head = [7,7,7,7], val = 7
输出:[]
var removeElements = function(head, val) {
const ret = new ListNode(0, head);
let cur = ret;
while(cur.next) {
if(cur.next.val === val) {
cur.next = cur.next.next;
continue;
}
cur = cur.next;
}
return ret.next;
};
206.反转链表
题意:反转一个单链表。
示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL
// 双指针:
var reverseList = function(head) {
if(!head || !head.next) return head;
let temp = null, pre = null, cur = head;
while(cur) {
temp = cur.next;
cur.next = pre;
pre = cur;
cur = temp;
}
// temp = cur = null;
return pre;
};
// 递归:
var reverse = function(pre, head) {
if(!head) return pre;
const temp = head.next;
head.next = pre;
pre = head
return reverse(pre, temp);
}
var reverseList = function(head) {
return reverse(null, head);
};
// 递归2
var reverse = function(head) {
if(!head || !head.next) return head;
// 从后往前翻
const pre = reverse(head.next);
head.next = pre.next;
pre.next = head;
return head;
}
var reverseList = function(head) {
let cur = head;
while(cur && cur.next) {
cur = cur.next;
}
reverse(head);
return cur;
};
24. 两两交换链表中的节点
给定一个链表,两两交换其中相邻的节点,并返回交换后的链表。
你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换。
var swapPairs = function (head) {
let ret = new ListNode(0, head), temp = ret;
while (temp.next && temp.next.next) {
let cur = temp.next.next, pre = temp.next;
pre.next = cur.next;
cur.next = pre;
temp.next = cur;
temp = pre;
}
return ret.next;
};
19.删除链表的倒数第N个节点
给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。
var removeNthFromEnd = function(head, n) {
let ret = new ListNode(0, head),
slow = fast = ret;
while(n--) fast = fast.next;
while (fast.next !== null) {
fast = fast.next;
slow = slow.next
};
slow.next = slow.next.next;
return ret.next;
};
面试题 02.07. 链表相交
给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。
var getListLen = function(head) {
let len = 0, cur = head;
while(cur) {
len++;
cur = cur.next;
}
return len;
}
var getIntersectionNode = function(headA, headB) {
let curA = headA,curB = headB,
lenA = getListLen(headA),
lenB = getListLen(headB);
if(lenA < lenB) {
// 下面交换变量注意加 “分号” ,两个数组交换变量在同一个作用域下时
// 如果不加分号,下面两条代码等同于一条代码: [curA, curB] = [lenB, lenA]
[curA, curB] = [curB, curA];
[lenA, lenB] = [lenB, lenA];
}
let i = lenA - lenB;
while(i-- > 0) {
curA = curA.next;
}
while(curA && curA !== curB) {
curA = curA.next;
curB = curB.next;
}
return curA;
};
142.环形链表II
题意: 给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。
说明:不允许修改给定的链表。
// 先判断是否是环形链表
var detectCycle = function(head) {
if(!head || !head.next) return null;
let slow =head.next, fast = head.next.next;
while(fast && fast.next && fast!== slow) {
slow = slow.next;
fast = fast.next.next;
}
if(!fast || !fast.next ) return null;
slow = head;
while (fast !== slow) {
slow = slow.next;
fast = fast.next;
}
return slow;
};
var detectCycle = function(head) {
if(!head || !head.next) return null;
let slow =head.next, fast = head.next.next;
while(fast && fast.next) {
slow = slow.next;
fast = fast.next.next;
if(fast == slow) {
slow = head;
while (fast !== slow) {
slow = slow.next;
fast = fast.next;
}
return slow;
}
}
return null;
};
哈希表
242.有效的字母异位词
给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。
示例 1: 输入: s = "anagram", t = "nagaram" 输出: true
示例 2: 输入: s = "rat", t = "car" 输出: false
var isAnagram = function(s, t) {
if(s.length !== t.length) return false;
const resSet = new Array(26).fill(0);
const base = "a".charCodeAt();
for(const i of s) {
resSet[i.charCodeAt() - base]++;
}
for(const i of t) {
if(!resSet[i.charCodeAt() - base]) return false;
resSet[i.charCodeAt() - base]--;
}
return true;
};
349. 两个数组的交集
题意:给定两个数组,编写一个函数来计算它们的交集。
var intersection = function(nums1, nums2) {
// 根据数组大小交换操作的数组
if(nums1.length < nums2.length) {
const _ = nums1;
nums1 = nums2;
nums2 = _;
}
const nums1Set = new Set(nums1);
const resSet = new Set();
// for(const n of nums2) {
// nums1Set.has(n) && resSet.add(n);
// }
// 循环 比 迭代器快
for(let i = nums2.length - 1; i >= 0; i--) {
nums1Set.has(nums2[i]) && resSet.add(nums2[i]);
}
return Array.from(resSet);
};
第202题. 快乐数
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为 1,那么这个数就是快乐数。
如果 n 是快乐数就返回 True ;不是,则返回 False 。
示例:
输入:19
输出:true
解释:
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1
var isHappy = function (n) {
let m = new Map()
const getSum = (num) => {
let sum = 0
while (n) {
sum += (n % 10) ** 2
n = Math.floor(n / 10)
}
return sum
}
while (true) {
// n出现过,证明已陷入无限循环
if (m.has(n)) return false
if (n === 1) return true
m.set(n, 1)
n = getSum(n)
}
}
// 方法二:使用环形链表的思想 说明出现闭环 退出循环
var isHappy = function(n) {
if (getN(n) == 1) return true;
let a = getN(n), b = getN(getN(n));
// 如果 a === b
while (b !== 1 && getN(b) !== 1 && a !== b) {
a = getN(a);
b = getN(getN(b));
}
return b === 1 || getN(b) === 1 ;
};
// 方法三:使用Set()更简洁
/**
* @param {number} n
* @return {boolean}
*/
var getSum = function (n) {
let sum = 0;
while (n) {
sum += (n % 10) ** 2;
n = Math.floor(n/10);
}
return sum;
}
var isHappy = function(n) {
let set = new Set(); // Set() 里的数是惟一的
// 如果在循环中某个值重复出现,说明此时陷入死循环,也就说明这个值不是快乐数
while (n !== 1 && !set.has(n)) {
set.add(n);
n = getSum(n);
}
return n === 1;
};
// 方法四:使用Set(),求和用reduce
var isHappy = function(n) {
let set = new Set();
let totalCount;
while(totalCount !== 1) {
let arr = (''+(totalCount || n)).split('');
totalCount = arr.reduce((total, num) => {
return total + num * num
}, 0)
if (set.has(totalCount)) {
return false;
}
set.add(totalCount);
}
return true;
};
第454题.四数相加II
给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j] + C[k] + D[l] = 0。
为了使问题简单化,所有的 A, B, C, D 具有相同的长度 N,且 0 ≤ N ≤ 500 。所有整数的范围在 -2^28 到 2^28 - 1 之间,最终结果不会超过 2^31 - 1 。
例如:
输入:
- A = [ 1, 2]
- B = [-2,-1]
- C = [-1, 2]
- D = [ 0, 2]
输出:
2
解释:
两个元组如下:
- (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
- (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
var fourSumCount = function(nums1, nums2, nums3, nums4) {
const twoSumMap = new Map();
let count = 0;
for(const n1 of nums1) {
for(const n2 of nums2) {
const sum = n1 + n2;
twoSumMap.set(sum, (twoSumMap.get(sum) || 0) + 1)
}
}
for(const n3 of nums3) {
for(const n4 of nums4) {
const sum = n3 + n4;
count += (twoSumMap.get(0 - sum) || 0)
}
}
return count;
};
383. 赎金信
给定一个赎金信 (ransom) 字符串和一个杂志(magazine)字符串,判断第一个字符串 ransom 能不能由第二个字符串 magazines 里面的字符构成。如果可以构成,返回 true ;否则返回 false。
(题目说明:为了不暴露赎金信字迹,要从杂志上搜索各个需要的字母,组成单词来表达意思。杂志字符串中的每个字符只能在赎金信字符串中使用一次。)
注意:
你可以假设两个字符串均只含有小写字母。
canConstruct("a", "b") -> false
canConstruct("aa", "ab") -> false
canConstruct("aa", "aab") -> true
var canConstruct = function(ransomNote, magazine) {
const strArr = new Array(26).fill(0),
base = "a".charCodeAt();
for(const s of magazine) {
strArr[s.charCodeAt() - base]++;
}
for(const s of ransomNote) {
const index = s.charCodeAt() - base;
if(!strArr[index]) return false;
strArr[index]--;
}
return true;
};
第15题. 三数之和
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。
注意: 答案中不可以包含重复的三元组。
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为: [ [-1, 0, 1], [-1, -1, 2] ]
var threeSum = function(nums) {
const res = [], len = nums.length
// 将数组排序
nums.sort((a, b) => a - b)
for (let i = 0; i < len; i++) {
let l = i + 1, r = len - 1, iNum = nums[i]
// 数组排过序,如果第一个数大于0直接返回res
if (iNum > 0) return res
// 去重
if (iNum == nums[i - 1]) continue
while(l < r) {
let lNum = nums[l], rNum = nums[r], threeSum = iNum + lNum + rNum
// 三数之和小于0,则左指针向右移动
if (threeSum < 0) l++
else if (threeSum > 0) r--
else {
res.push([iNum, lNum, rNum])
// 去重
while(l < r && nums[l] == nums[l + 1]){
l++
}
while(l < r && nums[r] == nums[r - 1]) {
r--
}
l++
r--
}
}
}
return res
};
第18题. 四数之和
题意:给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。
注意:
答案中不可以包含重复的四元组。
示例: 给定数组 nums = [1, 0, -1, 0, -2, 2],和 target = 0。 满足要求的四元组集合为: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]
var fourSum = function(nums, target) {
const len = nums.length;
if(len < 4) return [];
nums.sort((a, b) => a - b);
const res = [];
for(let i = 0; i < len - 3; i++) {
// 去重i
if(i > 0 && nums[i] === nums[i - 1]) continue;
for(let j = i + 1; j < len - 2; j++) {
// 去重j
if(j > i + 1 && nums[j] === nums[j - 1]) continue;
let l = j + 1, r = len - 1;
while(l < r) {
const sum = nums[i] + nums[j] + nums[l] + nums[r];
if(sum < target) { l++; continue}
if(sum > target) { r--; continue}
res.push([nums[i], nums[j], nums[l], nums[r]]);
while(l < r && nums[l] === nums[++l]);
while(l < r && nums[r] === nums[--r]);
}
}
}
return res;
};
字符串
344.反转字符串
编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 char[] 的形式给出。
不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。
你可以假设数组中的所有字符都是 ASCII 码表中的可打印字符。
示例 1:
输入:["h","e","l","l","o"]
输出:["o","l","l","e","h"]
示例 2:
输入:["H","a","n","n","a","h"]
输出:["h","a","n","n","a","H"]
var reverseString = function(s) {
//Do not return anything, modify s in-place instead.
reverse(s)
};
var reverse = function(s) {
let l = -1, r = s.length;
while(++l < --r) [s[l], s[r]] = [s[r], s[l]];
};
541. 反转字符串II
给定一个字符串 s 和一个整数 k,从字符串开头算起, 每计数至 2k 个字符,就反转这 2k 个字符中的前 k 个字符。
如果剩余字符少于 k 个,则将剩余字符全部反转。
如果剩余字符小于 2k 但大于或等于 k 个,则反转前 k 个字符,其余字符保持原样。
示例:
输入: s = "abcdefg", k = 2
输出: "bacdfeg"
var reverseStr = function(s, k) {
const len = s.length;
let resArr = s.split("");
for(let i = 0; i < len; i += 2 * k) {
let l = i - 1, r = i + k > len ? len : i + k;
while(++l < --r) [resArr[l], resArr[r]] = [resArr[r], resArr[l]];
}
return resArr.join("");
};
题目:剑指Offer 05.替换空格
请实现一个函数,把字符串 s 中的每个空格替换成"%20"。
示例 1: 输入:s = "We are happy."
输出:"We%20are%20happy.
var replaceSpace = function(s) {
// 字符串转为数组
const strArr = Array.from(s);
let count = 0;
// 计算空格数量
for(let i = 0; i < strArr.length; i++) {
if (strArr[i] === ' ') {
count++;
}
}
let left = strArr.length - 1;
let right = strArr.length + count * 2 - 1;
while(left >= 0) {
if (strArr[left] === ' ') {
strArr[right--] = '0';
strArr[right--] = '2';
strArr[right--] = '%';
left--;
} else {
strArr[right--] = strArr[left--];
}
}
// 数组转字符串
return strArr.join('');
};
151.翻转字符串里的单词
给定一个字符串,逐个翻转字符串中的每个单词。
示例 1:
输入: "the sky is blue"
输出: "blue is sky the"
示例 2:
输入: " hello world! "
输出: "world! hello"
解释: 输入字符串可以在前面或者后面包含多余的空格,但是反转后的字符不能包括。
示例 3:
输入: "a good example"
输出: "example good a"
解释: 如果两个单词间有多余的空格,将反转后单词间的空格减少到只含一个。
var reverseWords = function(s) {
// 字符串转数组
const strArr = Array.from(s);
// 移除多余空格
removeExtraSpaces(strArr);
// 翻转
reverse(strArr, 0, strArr.length - 1);
let start = 0;
for(let i = 0; i <= strArr.length; i++) {
if (strArr[i] === ' ' || i === strArr.length) {
// 翻转单词
reverse(strArr, start, i - 1);
start = i + 1;
}
}
return strArr.join('');
};
// 删除多余空格
function removeExtraSpaces(strArr) {
let slowIndex = 0;
let fastIndex = 0;
while(fastIndex < strArr.length) {
// 移除开始位置和重复的空格
if (strArr[fastIndex] === ' ' && (fastIndex === 0 || strArr[fastIndex - 1] === ' ')) {
fastIndex++;
} else {
strArr[slowIndex++] = strArr[fastIndex++];
}
}
// 移除末尾空格
strArr.length = strArr[slowIndex - 1] === ' ' ? slowIndex - 1 : slowIndex;
}
// 翻转从 start 到 end 的字符
function reverse(strArr, start, end) {
let left = start;
let right = end;
while(left < right) {
// 交换
[strArr[left], strArr[right]] = [strArr[right], strArr[left]];
left++;
right--;
}
}
题目:剑指Offer58-II.左旋转字符串
字符串的左旋转操作是把字符串前面的若干个字符转移到字符串的尾部。请定义一个函数实现字符串左旋转操作的功能。比如,输入字符串"abcdefg"和数字2,该函数将返回左旋转两位得到的结果"cdefgab"。
示例 1:
输入: s = "abcdefg", k = 2
输出: "cdefgab"
示例 2:
输入: s = "lrloseumgh", k = 6
输出: "umghlrlose"
限制:
1 <= k < s.length <= 10000
var reverseLeftWords = function(s, n) {
const length = s.length;
let i = 0;
while (i < length - n) {
s = s[length - 1] + s;
i++;
}
return s.slice(0, length);
};
28. 实现 strStr()
实现 strStr() 函数。
给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始)。如果不存在,则返回 -1。
示例 1: 输入: haystack = "hello", needle = "ll" 输出: 2
示例 2: 输入: haystack = "aaaaa", needle = "bba" 输出: -1
说明: 当 needle 是空字符串时,我们应当返回什么值呢?这是一个在面试中很好的问题。 对于本题而言,当 needle 是空字符串时我们应当返回 0 。这与C语言的 strstr() 以及 Java的 indexOf() 定义相符。
var strStr = function (haystack, needle) {
if (needle.length === 0)
return 0;
const getNext = (needle) => {
let next = [];
let j = -1;
next.push(j);
for (let i = 1; i < needle.length; ++i) {
while (j >= 0 && needle[i] !== needle[j + 1])
j = next[j];
if (needle[i] === needle[j + 1])
j++;
next.push(j);
}
return next;
}
let next = getNext(needle);
let j = -1;
for (let i = 0; i < haystack.length; ++i) {
while (j >= 0 && haystack[i] !== needle[j + 1])
j = next[j];
if (haystack[i] === needle[j + 1])
j++;
if (j === needle.length - 1)
return (i - needle.length + 1);
}
return -1;
};
459.重复的子字符串
给定一个非空的字符串,判断它是否可以由它的一个子串重复多次构成。给定的字符串只含有小写英文字母,并且长度不超过10000。
示例 1:
输入: "abab"
输出: True
解释: 可由子字符串 "ab" 重复两次构成。
示例 2:
输入: "aba"
输出: False
示例 3:
输入: "abcabcabcabc"
输出: True
解释: 可由子字符串 "abc" 重复四次构成。 (或者子字符串 "abcabc" 重复两次构成。)
var repeatedSubstringPattern = function (s) {
if (s.length === 0)
return false;
const getNext = (s) => {
let next = [];
let j = -1;
next.push(j);
for (let i = 1; i < s.length; ++i) {
while (j >= 0 && s[i] !== s[j + 1])
j = next[j];
if (s[i] === s[j + 1])
j++;
next.push(j);
}
return next;
}
let next = getNext(s);
if (next[next.length - 1] !== -1 && s.length % (s.length - (next[next.length - 1] + 1)) === 0)
return true;
return false;
};
var repeatedSubstringPattern = function (s) {
if (s.length === 0)
return false;
const getNext = (s) => {
let next = [];
let j = 0;
next.push(j);
for (let i = 1; i < s.length; ++i) {
while (j > 0 && s[i] !== s[j])
j = next[j - 1];
if (s[i] === s[j])
j++;
next.push(j);
}
return next;
}
let next = getNext(s);
if (next[next.length - 1] !== 0 && s.length % (s.length - next[next.length - 1]) === 0)
return true;
return false;
};
双指针
27. 移除元素
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。
示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。
var removeElement = (nums, val) => {
let k = 0;
for(let i = 0;i < nums.length;i++){
if(nums[i] != val){
nums[k++] = nums[i]
}
}
return k;
};
栈与队列
232.用栈实现队列
使用栈实现队列的下列操作:
push(x) -- 将一个元素放入队列的尾部。
pop() -- 从队列首部移除元素。
peek() -- 返回队列首部的元素。
empty() -- 返回队列是否为空。
var MyQueue = function() {
this.stackIn = [];
this.stackOut = [];
};
/**
* Push element x to the back of queue.
* @param {number} x
* @return {void}
*/
MyQueue.prototype.push = function(x) {
this.stackIn.push(x);
};
/**
* Removes the element from in front of queue and returns that element.
* @return {number}
*/
MyQueue.prototype.pop = function() {
const size = this.stackOut.length;
if(size) {
return this.stackOut.pop();
}
while(this.stackIn.length) {
this.stackOut.push(this.stackIn.pop());
}
return this.stackOut.pop();
};
/**
* Get the front element.
* @return {number}
*/
MyQueue.prototype.peek = function() {
const x = this.pop();
this.stackOut.push(x);
return x;
};
/**
* Returns whether the queue is empty.
* @return {boolean}
*/
MyQueue.prototype.empty = function() {
return !this.stackIn.length && !this.stackOut.length
};
225. 用队列实现栈
使用队列实现栈的下列操作:
- push(x) -- 元素 x 入栈
- pop() -- 移除栈顶元素
- top() -- 获取栈顶元素
- empty() -- 返回栈是否为空
注意:
- 你只能使用队列的基本操作-- 也就是 push to back, peek/pop from front, size, 和 is empty 这些操作是合法的。
- 你所使用的语言也许不支持队列。 你可以使用 list 或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
- 你可以假设所有操作都是有效的(例如, 对一个空的栈不会调用 pop 或者 top 操作)。
var MyStack = function() {
this.queue1 = [];
this.queue2 = [];
};
/**
* Push element x onto stack.
* @param {number} x
* @return {void}
*/
MyStack.prototype.push = function(x) {
this.queue1.push(x);
};
/**
* Removes the element on top of the stack and returns that element.
* @return {number}
*/
MyStack.prototype.pop = function() {
// 减少两个队列交换的次数, 只有当queue1为空时,交换两个队列
if(!this.queue1.length) {
[this.queue1, this.queue2] = [this.queue2, this.queue1];
}
while(this.queue1.length > 1) {
this.queue2.push(this.queue1.shift());
}
return this.queue1.shift();
};
/**
* Get the top element.
* @return {number}
*/
MyStack.prototype.top = function() {
const x = this.pop();
this.queue1.push(x);
return x;
};
/**
* Returns whether the stack is empty.
* @return {boolean}
*/
MyStack.prototype.empty = function() {
return !this.queue1.length && !this.queue2.length;
};
20. 有效的括号
给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
- 注意空字符串可被认为是有效字符串。
示例 1:
- 输入: "()"
- 输出: true
示例 2:
- 输入: "()[]{}"
- 输出: true
示例 3:
- 输入: "(]"
- 输出: false
示例 4:
- 输入: "([)]"
- 输出: false
示例 5:
- 输入: "{[]}"
- 输出: true
var isValid = function (s) {
const stack = [];
for (let i = 0; i < s.length; i++) {
let c = s[i];
switch (c) {
case '(':
stack.push(')');
break;
case '[':
stack.push(']');
break;
case '{':
stack.push('}');
break;
default:
if (c !== stack.pop()) {
return false;
}
}
}
return stack.length === 0;
};
// 简化版本
var isValid = function(s) {
const stack = [],
map = {
"(":")",
"{":"}",
"[":"]"
};
for(const x of s) {
if(x in map) {
stack.push(x);
continue;
};
if(map[stack.pop()] !== x) return false;
}
return !stack.length;
};
1047. 删除字符串中的所有相邻重复项
给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
- 输入:"abbaca"
- 输出:"ca"
- 解释:例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。
var removeDuplicates = function(s) {
const stack = [];
for(const x of s) {
let c = null;
if(stack.length && x === (c = stack.pop())) continue;
c && stack.push(c);
stack.push(x);
}
return stack.join("");
};
var removeDuplicates = function(s) {
s = [...s];
let top = -1; // 指向栈顶元素的下标
for(let i = 0; i < s.length; i++) {
if(top === -1 || s[top] !== s[i]) { // top === -1 即空栈
s[++top] = s[i]; // 入栈
} else {
top--; // 推出栈
}
}
s.length = top + 1; // 栈顶元素下标 + 1 为栈的长度
return s.join('');
};
150. 逆波兰表达式求值
根据 逆波兰表示法,求表达式的值。
有效的运算符包括 + , - , * , / 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
整数除法只保留整数部分。 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
- 输入: ["2", "1", "+", "3", " * "]
- 输出: 9
- 解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
- 输入: ["4", "13", "5", "/", "+"]
- 输出: 6
- 解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
- 输入: ["10", "6", "9", "3", "+", "-11", " * ", "/", " * ", "17", "+", "5", "+"]
- 输出: 22
var evalRPN = function(tokens) {
const s = new Map([
["+", (a, b) => a * 1 + b * 1],
["-", (a, b) => b - a],
["*", (a, b) => b * a],
["/", (a, b) => (b / a) | 0]
]);
const stack = [];
for (const i of tokens) {
if(!s.has(i)) {
stack.push(i);
continue;
}
stack.push(s.get(i)(stack.pop(),stack.pop()))
}
return stack.pop();
};
239. 滑动窗口最大值
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
var maxSlidingWindow = function (nums, k) {
class MonoQueue {
queue;
constructor() {
this.queue = [];
}
enqueue(value) {
let back = this.queue[this.queue.length - 1];
while (back !== undefined && back < value) {
this.queue.pop();
back = this.queue[this.queue.length - 1];
}
this.queue.push(value);
}
dequeue(value) {
let front = this.front();
if (front === value) {
this.queue.shift();
}
}
front() {
return this.queue[0];
}
}
let helperQueue = new MonoQueue();
let i = 0, j = 0;
let resArr = [];
while (j < k) {
helperQueue.enqueue(nums[j++]);
}
resArr.push(helperQueue.front());
while (j < nums.length) {
helperQueue.enqueue(nums[j]);
helperQueue.dequeue(nums[i]);
resArr.push(helperQueue.front());
i++, j++;
}
return resArr;
};
347.前 K 个高频元素
给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
示例 1:
- 输入: nums = [1,1,1,2,2,3], k = 2
- 输出: [1,2]
示例 2:
- 输入: nums = [1], k = 1
- 输出: [1]
class Heap {
constructor(compareFn) {
this.compareFn = compareFn;
this.queue = [];
}
// 添加
push(item) {
// 推入元素
this.queue.push(item);
// 上浮
let index = this.size() - 1; // 记录推入元素下标
let parent = Math.floor((index - 1) / 2); // 记录父节点下标
while (parent >= 0 && this.compare(parent, index) > 0) { // 注意compare参数顺序
[this.queue[index], this.queue[parent]] = [this.queue[parent], this.queue[index]];
// 更新下标
index = parent;
parent = Math.floor((index - 1) / 2);
}
}
// 获取堆顶元素并移除
pop() {
// 堆顶元素
const out = this.queue[0];
// 移除堆顶元素 填入最后一个元素
this.queue[0] = this.queue.pop();
// 下沉
let index = 0; // 记录下沉元素下标
let left = 1; // left 是左子节点下标 left + 1 则是右子节点下标
let searchChild = this.compare(left, left + 1) > 0 ? left + 1 : left;
while (searchChild !== undefined && this.compare(index, searchChild) > 0) { // 注意compare参数顺序
[this.queue[index], this.queue[searchChild]] = [this.queue[searchChild], this.queue[index]];
// 更新下标
index = searchChild;
left = 2 * index + 1;
searchChild = this.compare(left, left + 1) > 0 ? left + 1 : left;
}
return out;
}
size() {
return this.queue.length;
}
// 使用传入的 compareFn 比较两个位置的元素
compare(index1, index2) {
// 处理下标越界问题
if (this.queue[index1] === undefined) return 1;
if (this.queue[index2] === undefined) return -1;
return this.compareFn(this.queue[index1], this.queue[index2]);
}
}
const topKFrequent = function (nums, k) {
const map = new Map();
for (const num of nums) {
map.set(num, (map.get(num) || 0) + 1);
}
// 创建小顶堆
const heap= new Heap((a, b) => a[1] - b[1]);
// entry 是一个长度为2的数组,0位置存储key,1位置存储value
for (const entry of map.entries()) {
heap.push(entry);
if (heap.size() > k) {
heap.pop();
}
}
// return heap.queue.map(e => e[0]);
const res = [];
for (let i = heap.size() - 1; i >= 0; i--) {
res[i] = heap.pop()[0];
}
return res;
};
小顶堆解法
var topKFrequent = function(nums, k) {
//前k个高频元素
let hash = new Map();
//频率统计
for(let i of nums){
if(!hash.has(i)) hash.set(i,1);
else hash.set(i,hash.get(i)+1);
}
nums=new Array(hash.size);
let j=0;
for(let [key,value] of hash){
nums[j++]=[key,value];
}
getK(nums,0,nums.length-1,k);
let res=new Array(k);
for(let i=0;i<k;++i){
res[i] = nums[i][0];
}
return res;
};
//分治
var getK = function(nums,left,right,k){
if(left>=right) return ;
let temp = quikSort(nums,left,right,k);
if(temp+1==k+left) return ;
else if(temp+1<k+left){
getK(nums,temp+1,right,k-(temp+1-left)); //前面的temp+1-left已经符合要求 找剩下的k-(temp+1-left)个最大元素
} else getK(nums,left,temp-1,k); //继续找前k个最大元素
return ;
}
var quikSort = function(nums,left,right){
if(left>=right) return left;
let pivot = nums[left];
let i=left,j=right;
while(i<j){
while(nums[j][1]<pivot[1] && i<j) --j;
nums[i] = nums[j];
while(nums[i][1]>=pivot[1] && i<j) ++i;
nums[j] = nums[i];
if(i==j) nums[i] = pivot;
}
return i;
}
哈希+sort
var topKFrequent = function(nums, k) {
// //法一:哈希表+sort
let map = new Map();
for(let num of nums) {
map.set(num, map.has(num) ? map.get(num) + 1 : 1);//初始化出现次数为1,之后累加
}
if(k === map.size) return [...map.keys()];//k如果等于map.size,直接返回全部key
let arr = Array.from(map).sort((a, b) => {return b[1] - a[1]});//从大到小排序
return arr.slice(0, k).map(n => n[0])//截取前k个key
};
哈希+桶排序
var topKFrequent = function(nums, k) {
//法二:哈希表+桶排序
let map = new Map();
for(let num of nums) {
map.set(num, map.has(num) ? map.get(num) + 1 : 1);//初始化出现次数为1,之后累加
}
if(k === map.size) return [...map.keys()];//k如果等于map.size,直接返回全部key
const bucketSort = () => {
let arr = [];
let res = [];
map.forEach((value, key) => {//arr[i]存放频率为i的key数组
if(!arr[value]) arr[value] = [key];
else arr[value].push(key);
});
for(let i = arr.length - 1; i >= 0 && res.length < k; i--) {
if(arr[i]) {
res.push(...arr[i]);//将数组转换为用逗号分割的参数序列
}
}
return res;
}
return bucketSort();
};
二叉树
前序遍历
var preorderTraversal = function(root) {
let res=[];
const dfs=function(root){
if(root===null)return ;
//先序遍历所以从父节点开始
res.push(root.val);
//递归左子树
dfs(root.left);
//递归右子树
dfs(root.right);
}
//只使用一个参数 使用闭包进行存储结果
dfs(root);
return res;
};
中序遍历
var inorderTraversal = function(root) {
let res=[];
const dfs=function(root){
if(root===null){
return ;
}
dfs(root.left);
res.push(root.val);
dfs(root.right);
}
dfs(root);
return res;
};
后序遍历
var postorderTraversal = function(root) {
let res=[];
const dfs=function(root){
if(root===null){
return ;
}
dfs(root.left);
dfs(root.right);
res.push(root.val);
}
dfs(root);
return res;
};
二叉树迭代遍历
前序遍历:
// 入栈 右 -> 左
// 出栈 中 -> 左 -> 右
var preorderTraversal = function(root, res = []) {
if(!root) return res;
const stack = [root];
let cur = null;
while(stack.length) {
cur = stack.pop();
res.push(cur.val);
cur.right && stack.push(cur.right);
cur.left && stack.push(cur.left);
}
return res;
};
中序遍历:
// 入栈 左 -> 右
// 出栈 左 -> 中 -> 右
var inorderTraversal = function(root, res = []) {
const stack = [];
let cur = root;
while(stack.length || cur) {
if(cur) {
stack.push(cur);
// 左
cur = cur.left;
} else {
// --> 弹出 中
cur = stack.pop();
res.push(cur.val);
// 右
cur = cur.right;
}
};
return res;
};
后序遍历:
// 入栈 左 -> 右
// 出栈 中 -> 右 -> 左 结果翻转
var postorderTraversal = function(root, res = []) {
if (!root) return res;
const stack = [root];
let cur = null;
do {
cur = stack.pop();
res.push(cur.val);
cur.left && stack.push(cur.left);
cur.right && stack.push(cur.right);
} while(stack.length);
return res.reverse();
};
102.二叉树的层序遍历
给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。
var levelOrder = function(root) {
//二叉树的层序遍历
let res=[],queue=[];
queue.push(root);
if(root===null){
return res;
}
while(queue.length!==0){
// 记录当前层级节点数
let length=queue.length;
//存放每一层的节点
let curLevel=[];
for(let i=0;i<length;i++){
let node=queue.shift();
curLevel.push(node.val);
// 存放当前层下一层的节点
node.left&&queue.push(node.left);
node.right&&queue.push(node.right);
}
//把每一层的结果放到结果数组
res.push(curLevel);
}
return res;
};
翻转二叉树
1、递归
var invertTree = function(root) {
// 终止条件
if (!root) {
return null;
}
// 交换左右节点
const rightNode = root.right;
root.right = invertTree(root.left);
root.left = invertTree(rightNode);
return root;
};
2、层序遍历
var invertTree = function(root) {
//我们先定义节点交换函数
const invertNode=function(root,left,right){
let temp=left;
left=right;
right=temp;
root.left=left;
root.right=right;
}
//使用层序遍历
let queue=[];
if(root===null){
return root;
}
queue.push(root);
while(queue.length){
let length=queue.length;
while(length--){
let node=queue.shift();
//节点处理逻辑
invertNode(node,node.left,node.right);
node.left&&queue.push(node.left);
node.right&&queue.push(node.right);
}
}
return root;
};
101. 对称二叉树
1、递归判断是否为对称二叉树:
var isSymmetric = function(root) {
//使用递归遍历左右子树 递归三部曲
// 1. 确定递归的参数 root.left root.right和返回值true false
const compareNode=function(left,right){
//2. 确定终止条件 空的情况
if(left===null&&right!==null||left!==null&&right===null){
return false;
}else if(left===null&&right===null){
return true;
}else if(left.val!==right.val){
return false;
}
//3. 确定单层递归逻辑
let outSide=compareNode(left.left,right.right);
let inSide=compareNode(left.right,right.left);
return outSide&&inSide;
}
if(root===null){
return true;
}
return compareNode(root.left,root.right);
};
2、队列实现迭代判断是否为对称二叉树:
var isSymmetric = function(root) {
//迭代方法判断是否是对称二叉树
//首先判断root是否为空
if(root===null){
return true;
}
let queue=[];
queue.push(root.left);
queue.push(root.right);
while(queue.length){
let leftNode=queue.shift();//左节点
let rightNode=queue.shift();//右节点
if(leftNode===null&&rightNode===null){
continue;
}
if(leftNode===null||rightNode===null||leftNode.val!==rightNode.val){
return false;
}
queue.push(leftNode.left);//左节点左孩子入队
queue.push(rightNode.right);//右节点右孩子入队
queue.push(leftNode.right);//左节点右孩子入队
queue.push(rightNode.left);//右节点左孩子入队
}
return true;
};
3、栈实现迭代判断是否为对称二叉树:
var isSymmetric = function(root) {
//迭代方法判断是否是对称二叉树
//首先判断root是否为空
if(root===null){
return true;
}
let stack=[];
stack.push(root.left);
stack.push(root.right);
while(stack.length){
let rightNode=stack.pop();//左节点
let leftNode=stack.pop();//右节点
if(leftNode===null&&rightNode===null){
continue;
}
if(leftNode===null||rightNode===null||leftNode.val!==rightNode.val){
return false;
}
stack.push(leftNode.left);//左节点左孩子入队
stack.push(rightNode.right);//右节点右孩子入队
stack.push(leftNode.right);//左节点右孩子入队
stack.push(rightNode.left);//右节点左孩子入队
}
return true;
};
104.二叉树的最大深度
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例: 给定二叉树 [3,9,20,null,null,15,7],
方法1
var maxdepth = function(root) {
if (root === null) return 0;
return 1 + Math.max(maxdepth(root.left), maxdepth(root.right))
};
方法2
var maxdepth = function(root) {
//使用递归的方法 递归三部曲
//1. 确定递归函数的参数和返回值
const getdepth=function(node){
//2. 确定终止条件
if(node===null){
return 0;
}
//3. 确定单层逻辑
let leftdepth=getdepth(node.left);
let rightdepth=getdepth(node.right);
let depth=1+Math.max(leftdepth,rightdepth);
return depth;
}
return getdepth(root);
};
111.二叉树的最小深度
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],
1、递归
var minDepth1 = function(root) {
if(!root) return 0;
// 到叶子节点 返回 1
if(!root.left && !root.right) return 1;
// 只有右节点时 递归右节点
if(!root.left) return 1 + minDepth(root.right);
// 只有左节点时 递归左节点
if(!root.right) return 1 + minDepth(root.left);
return Math.min(minDepth(root.left), minDepth(root.right)) + 1;
};
2、迭代法
var minDepth = function(root) {
if(!root) return 0;
const queue = [root];
let dep = 0;
while(true) {
let size = queue.length;
dep++;
while(size--){
const node = queue.shift();
// 到第一个叶子节点 返回 当前深度
if(!node.left && !node.right) return dep;
node.left && queue.push(node.left);
node.right && queue.push(node.right);
}
}
};
222.完全二叉树的节点个数
给出一个完全二叉树,求出该树的节点个数。
示例 1:
- 输入:root = [1,2,3,4,5,6]
- 输出:6
示例 2:
- 输入:root = []
- 输出:0
示例 3:
- 输入:root = [1]
- 输出:1
1、递归
var countNodes = function(root) {
//递归法计算二叉树节点数
// 1. 确定递归函数参数
const getNodeSum=function(node){
//2. 确定终止条件
if(node===null){
return 0;
}
//3. 确定单层递归逻辑
let leftNum=getNodeSum(node.left);
let rightNum=getNodeSum(node.right);
return leftNum+rightNum+1;
}
return getNodeSum(root);
};
2、层序遍历
var countNodes = function(root) {
//层序遍历
let queue=[];
if(root===null){
return 0;
}
queue.push(root);
let nodeNums=0;
while(queue.length){
let length=queue.length;
while(length--){
let node=queue.shift();
nodeNums++;
node.left&&queue.push(node.left);
node.right&&queue.push(node.right);
}
}
return nodeNums;
};
110.平衡二叉树
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。 给定二叉树 [3,9,20,null,null,15,7]
返回true
给定二叉树 [1,2,2,3,3,null,null,4,4]
1、递归
var isBalanced = function(root) {
//还是用递归三部曲 + 后序遍历 左右中 当前左子树右子树高度相差大于1就返回-1
// 1. 确定递归函数参数以及返回值
const getDepth = function(node) {
// 2. 确定递归函数终止条件
if(node === null) return 0;
// 3. 确定单层递归逻辑
let leftDepth = getDepth(node.left); //左子树高度
// 当判定左子树不为平衡二叉树时,即可直接返回-1
if(leftDepth === -1) return -1;
let rightDepth = getDepth(node.right); //右子树高度
// 当判定右子树不为平衡二叉树时,即可直接返回-1
if(rightDepth === -1) return -1;
if(Math.abs(leftDepth - rightDepth) > 1) {
return -1;
} else {
return 1 + Math.max(leftDepth, rightDepth);
}
}
return !(getDepth(root) === -1);
};
2、迭代
// 获取当前节点的高度
var getHeight = function (curNode) {
let queue = [];
if (curNode !== null) queue.push(curNode); // 压入当前元素
let depth = 0, res = 0;
while (queue.length) {
let node = queue[queue.length - 1]; // 取出栈顶
if (node !== null) {
queue.pop();
queue.push(node); // 中
queue.push(null);
depth++;
node.right && queue.push(node.right); // 右
node.left && queue.push(node.left); // 左
} else {
queue.pop();
node = queue[queue.length - 1];
queue.pop();
depth--;
}
res = res > depth ? res : depth;
}
return res;
}
var isBalanced = function (root) {
if (root === null) return true;
let queue = [root];
while (queue.length) {
let node = queue[queue.length - 1]; // 取出栈顶
queue.pop();
if (Math.abs(getHeight(node.left) - getHeight(node.right)) > 1) {
return false;
}
node.right && queue.push(node.right);
node.left && queue.push(node.left);
}
return true;
};
257. 二叉树的所有路径
给定一个二叉树,返回所有从根节点到叶子节点的路径。
说明: 叶子节点是指没有子节点的节点。
1、递归
var binaryTreePaths = function(root) {
//递归遍历+递归三部曲
let res=[];
//1. 确定递归函数 函数参数
const getPath=function(node,curPath){
//2. 确定终止条件,到叶子节点就终止
if(node.left===null&&node.right===null){
curPath+=node.val;
res.push(curPath);
return ;
}
//3. 确定单层递归逻辑
curPath+=node.val+'->';
node.left&&getPath(node.left,curPath);
node.right&&getPath(node.right,curPath);
}
getPath(root,'');
return res;
};
2、迭代
var binaryTreePaths = function(root) {
if (!root) return [];
const stack = [root], paths = [''], res = [];
while (stack.length) {
const node = stack.pop();
let path = paths.pop();
if (!node.left && !node.right) { // 到叶子节点终止, 添加路径到结果中
res.push(path + node.val);
continue;
}
path += node.val + '->';
if (node.right) { // 右节点存在
stack.push(node.right);
paths.push(path);
}
if (node.left) { // 左节点存在
stack.push(node.left);
paths.push(path);
}
}
return res;
};
404.左叶子之和
计算给定二叉树的所有左叶子之和。、
1、递归法
var sumOfLeftLeaves = function(root) {
//采用后序遍历 递归遍历
// 1. 确定递归函数参数
const nodesSum = function(node){
// 2. 确定终止条件
if(node===null){
return 0;
}
let leftValue = nodesSum(node.left);
let rightValue = nodesSum(node.right);
// 3. 单层递归逻辑
let midValue = 0;
if(node.left&&node.left.left===null&&node.left.right===null){
midValue = node.left.val;
}
let sum = midValue + leftValue + rightValue;
return sum;
}
return nodesSum(root);
};
2、迭代法
var sumOfLeftLeaves = function(root) {
//采用层序遍历
if(root===null){
return null;
}
let queue = [];
let sum = 0;
queue.push(root);
while(queue.length){
let node = queue.shift();
if(node.left!==null&&node.left.left===null&&node.left.right===null){
sum+=node.left.val;
}
node.left&&queue.push(node.left);
node.right&&queue.push(node.right);
}
return sum;
};
513.找树左下角的值
给定一个二叉树,在树的最后一行找到最左边的值。
1、递归
var findBottomLeftValue = function(root) {
//首先考虑递归遍历 前序遍历 找到最大深度的叶子节点即可
let maxPath = 0,resNode = null;
// 1. 确定递归函数的函数参数
const dfsTree = function(node,curPath){
// 2. 确定递归函数终止条件
if(node.left===null&&node.right===null){
if(curPath>maxPath){
maxPath = curPath;
resNode = node.val;
}
// return ;
}
node.left&&dfsTree(node.left,curPath+1);
node.right&&dfsTree(node.right,curPath+1);
}
dfsTree(root,1);
return resNode;
};
2、层序遍历
var findBottomLeftValue = function(root) {
//考虑层序遍历 记录最后一行的第一个节点
let queue = [];
if(root===null){
return null;
}
queue.push(root);
let resNode;
while(queue.length){
let length = queue.length;
for(let i=0; i<length; i++){
let node = queue.shift();
if(i===0){
resNode = node.val;
}
node.left&&queue.push(node.left);
node.right&&queue.push(node.right);
}
}
return resNode;
};
112. 路径总和
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。
说明: 叶子节点是指没有子节点的节点。
示例: 给定如下二叉树,以及目标和 sum = 22,
1、递归
let haspathsum = function (root, targetsum) {
// 递归法
const traversal = (node, cnt) => {
// 遇到叶子节点,并且计数为0
if (cnt === 0 && !node.left && !node.right) return true;
// 遇到叶子节点而没有找到合适的边(计数不为0),直接返回
if (!node.left && !node.right) return false;
// 左(空节点不遍历).遇到叶子节点返回true,则直接返回true
if (node.left && traversal(node.left, cnt - node.left.val)) return true;
// 右(空节点不遍历)
if (node.right && traversal(node.right, cnt - node.right.val)) return true;
return false;
};
if (!root) return false;
return traversal(root, targetsum - root.val);
2、迭代
let hasPathSum = function(root, targetSum) {
if(root === null) return false;
let nodeArr = [root];
let valArr = [0];
while(nodeArr.length) {
let curNode = nodeArr.shift();
let curVal = valArr.shift();
curVal += curNode.val;
// 为叶子结点,且和等于目标数,返回true
if (curNode.left === null && curNode.right === null && curVal === targetSum) {
return true;
}
// 左节点,将当前的数值也对应记录下来
if (curNode.left) {
nodeArr.push(curNode.left);
valArr.push(curVal);
}
// 右节点,将当前的数值也对应记录下来
if (curNode.right) {
nodeArr.push(curNode.right);
valArr.push(curVal);
}
}
return false;
};
654.最大二叉树
给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:
- 二叉树的根是数组中的最大元素。
- 左子树是通过数组中最大值左边部分构造出的最大二叉树。
- 右子树是通过数组中最大值右边部分构造出的最大二叉树。
通过给定的数组构建最大二叉树,并且输出这个树的根节点
var constructMaximumBinaryTree = function (nums) {
const BuildTree = (arr, left, right) => {
if (left > right)
return null;
let maxValue = -1;
let maxIndex = -1;
for (let i = left; i <= right; ++i) {
if (arr[i] > maxValue) {
maxValue = arr[i];
maxIndex = i;
}
}
let root = new TreeNode(maxValue);
root.left = BuildTree(arr, left, maxIndex - 1);
root.right = BuildTree(arr, maxIndex + 1, right);
return root;
}
let root = BuildTree(nums, 0, nums.length - 1);
return root;
};
617.合并二叉树
给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。
你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。
1、递归
var mergeTrees = function (root1, root2) {
const preOrder = (root1, root2) => {
if (!root1)
return root2
if (!root2)
return root1;
root1.val += root2.val;
root1.left = preOrder(root1.left, root2.left);
root1.right = preOrder(root1.right, root2.right);
return root1;
}
return preOrder(root1, root2);
};
2、迭代
var mergeTrees = function(root1, root2) {
if (root1 === null) return root2;
if (root2 === null) return root1;
let queue = [];
queue.push(root1);
queue.push(root2);
while (queue.length) {
let node1 = queue.shift();
let node2 = queue.shift();;
node1.val += node2.val;
if (node1.left !== null && node2.left !== null) {
queue.push(node1.left);
queue.push(node2.left);
}
if (node1.right !== null && node2.right !== null) {
queue.push(node1.right);
queue.push(node2.right);
}
if (node1.left === null && node2.left !== null) {
node1.left = node2.left;
}
if (node1.right === null && node2.right !== null) {
node1.right = node2.right;
}
}
return root1;
};
700.二叉搜索树中的搜索
给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。
1、递归
var searchBST = function (root, val) {
if (!root || root.val === val) {
return root;
}
if (root.val > val)
return searchBST(root.left, val);
if (root.val < val)
return searchBST(root.right, val);
};
2、迭代
var searchBST = function (root, val) {
while (root !== null) {
if (root.val > val)
root = root.left;
else if (root.val < val)
root = root.right;
else
return root;
}
return null;
};
98.验证二叉搜索树
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
方法1
var isValidBST = function (root) {
let arr = [];
const buildArr = (root) => {
if (root) {
buildArr(root.left);
arr.push(root.val);
buildArr(root.right);
}
}
buildArr(root);
for (let i = 1; i < arr.length; ++i) {
if (arr[i] <= arr[i - 1])
return false;
}
return true;
};
方法2
let pre = null;
var isValidBST = function (root) {
let pre = null;
const inOrder = (root) => {
if (root === null)
return true;
let left = inOrder(root.left);
if (pre !== null && pre.val >= root.val)
return false;
pre = root;
let right = inOrder(root.right);
return left && right;
}
return inOrder(root);
};
530.二叉搜索树的最小绝对差
给你一棵所有节点为非负值的二叉搜索树,请你计算树中任意两节点的差的绝对值的最小值。
501.二叉搜索树中的众数
给定一个有相同值的二叉搜索树(BST),找出 BST 中的所有众数(出现频率最高的元素)。
假定 BST 有如下定义:
- 结点左子树中所含结点的值小于等于当前结点的值
- 结点右子树中所含结点的值大于等于当前结点的值
- 左子树和右子树都是二叉搜索树
var findMode = function(root) {
// 使用递归中序遍历
let map = new Map();
// 1. 确定递归函数以及函数参数
const traverTree = function(root) {
// 2. 确定递归终止条件
if(root === null) {
return ;
}
traverTree(root.left);
// 3. 单层递归逻辑
map.set(root.val,map.has(root.val)?map.get(root.val)+1:1);
traverTree(root.right);
}
traverTree(root);
//上面把数据都存储到map
//下面开始寻找map里面的
// 定义一个最大出现次数的初始值为root.val的出现次数
let maxCount = map.get(root.val);
// 定义一个存放结果的数组res
let res = [];
for(let [key,value] of map) {
// 如果当前值等于最大出现次数就直接在res增加该值
if(value === maxCount) {
res.push(key);
}
// 如果value的值大于原本的maxCount就清空res的所有值,因为找到了更大的
if(value>maxCount) {
res = [];
maxCount = value;
res.push(key);
}
}
return res;
};
不使用额外空间,利用二叉树性质,中序遍历(有序):
var findMode = function(root) {
// 不使用额外空间,使用中序遍历,设置出现最大次数初始值为1
let count = 0,maxCount = 1;
let pre = root,res = [];
// 1.确定递归函数及函数参数
const travelTree = function(cur) {
// 2. 确定递归终止条件
if(cur === null) {
return ;
}
travelTree(cur.left);
// 3. 单层递归逻辑
if(pre.val === cur.val) {
count++;
}else {
count = 1;
}
pre = cur;
if(count === maxCount) {
res.push(cur.val);
}
if(count > maxCount) {
res = [];
maxCount = count;
res.push(cur.val);
}
travelTree(cur.right);
}
travelTree(root);
return res;
};
236. 二叉树的最近公共祖先
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
var lowestCommonAncestor = function(root, p, q) {
// 使用递归的方法
// 需要从下到上,所以使用后序遍历
// 1. 确定递归的函数
const travelTree = function(root,p,q) {
// 2. 确定递归终止条件
if(root === null || root === p||root === q) {
return root;
}
// 3. 确定递归单层逻辑
let left = travelTree(root.left,p,q);
let right = travelTree(root.right,p,q);
if(left !== null&&right !== null) {
return root;
}
if(left ===null) {
return right;
}
return left;
}
return travelTree(root,p,q);
};
701.二叉搜索树中的插入操作
给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据保证,新值和原始二叉搜索树中的任意节点值都不同。
注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回任意有效的结果。
var insertIntoBST = function (root, val) {
const setInOrder = (root, val) => {
if (root === null) {
let node = new TreeNode(val);
return node;
}
if (root.val > val)
root.left = setInOrder(root.left, val);
else if (root.val < val)
root.right = setInOrder(root.right, val);
return root;
}
return setInOrder(root, val);
};
450.删除二叉搜索树中的节点
给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
首先找到需要删除的节点; 如果找到了,删除它。 说明: 要求算法时间复杂度为 ,h 为树的高度。
var deleteNode = function (root, key) {
const deleteOneNode = target => {
if (!target) return target
if (!target.right) return target.left
let cur = target.right
while (cur.left) {
cur = cur.left
}
cur.left = target.left
return target.right
}
if (!root) return root
let cur = root
let pre = null
while (cur) {
if (cur.val === key) break
pre = cur
cur.val > key ? cur = cur.left : cur = cur.right
}
if (!pre) {
return deleteOneNode(cur)
}
if (pre.left && pre.left.val === key) {
pre.left = deleteOneNode(cur)
}
if (pre.right && pre.right.val === key) {
pre.right = deleteOneNode(cur)
}
return root
}
669. 修剪二叉搜索树
给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。
var trimBST = function(root, low, high) {
if(root === null) {
return null;
}
while(root !==null &&(root.val<low||root.val>high)) {
if(root.val<low) {
root = root.right;
}else {
root = root.left;
}
}
let cur = root;
while(cur!==null) {
while(cur.left&&cur.left.val<low) {
cur.left = cur.left.right;
}
cur = cur.left;
}
cur = root;
//判断右子树大于high的情况
while(cur!==null) {
while(cur.right&&cur.right.val>high) {
cur.right = cur.right.left;
}
cur = cur.right;
}
return root;
};
108.将有序数组转换为二叉搜索树
将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
var sortedArrayToBST = function (nums) {
const buildTree = (Arr, left, right) => {
if (left > right)
return null;
let mid = Math.floor(left + (right - left) / 2);
let root = new TreeNode(Arr[mid]);
root.left = buildTree(Arr, left, mid - 1);
root.right = buildTree(Arr, mid + 1, right);
return root;
}
return buildTree(nums, 0, nums.length - 1);
};
回溯算法
第77题. 组合
给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。
示例:
输入: n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
var combine = function(n, k) {
const res = [], path = [];
backtracking(n, k, 1);
return res;
function backtracking (n, k, i){
const len = path.length;
if(len === k) {
res.push(Array.from(path));
return;
}
for(let a = i; a <= n + len - k + 1; a++) {
path.push(a);
backtracking(n, k, a + 1);
path.pop();
}
}
};
216.组合总和III
找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。
说明:
- 所有数字都是正整数。
- 解集不能包含重复的组合。
示例 1: 输入: k = 3, n = 7 输出: [[1,2,4]]
示例 2: 输入: k = 3, n = 9 输出: [[1,2,6], [1,3,5], [2,3,4]]
var combinationSum3 = function(k, n) {
const backtrack = (start) => {
const l = path.length;
if (l === k) {
const sum = path.reduce((a, b) => a + b);
if (sum === n) {
res.push([...path]);
}
return;
}
for (let i = start; i <= 9 - (k - l) + 1; i++) {
path.push(i);
backtrack(i + 1);
path.pop();
}
}
let res = [], path = [];
backtrack(1);
return res;
};
17.电话号码的字母组合
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。
给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。
var letterCombinations = function(digits) {
const k = digits.length;
const map = ["","","abc","def","ghi","jkl","mno","pqrs","tuv","wxyz"];
if(!k) return [];
if(k === 1) return map[digits].split("");
const res = [], path = [];
backtracking(digits, k, 0);
return res;
function backtracking(n, k, a) {
if(path.length === k) {
res.push(path.join(""));
return;
}
for(const v of map[n[a]]) {
path.push(v);
backtracking(n, k, a + 1);
path.pop();
}
}
};
39. 组合总和
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。
说明:
- 所有数字(包括 target)都是正整数。
- 解集不能包含重复的组合。
示例 1: 输入:candidates = [2,3,6,7], target = 7, 所求解集为: [ [7], [2,2,3] ]
示例 2: 输入:candidates = [2,3,5], target = 8, 所求解集为: [ [2,2,2,2], [2,3,3], [3,5] ]
var combinationSum = function(candidates, target) {
const res = [], path = [];
candidates.sort((a,b)=>a-b); // 排序
backtracking(0, 0);
return res;
function backtracking(j, sum) {
if (sum === target) {
res.push(Array.from(path));
return;
}
for(let i = j; i < candidates.length; i++ ) {
const n = candidates[i];
if(n > target - sum) break;
path.push(n);
sum += n;
backtracking(i, sum);
path.pop();
sum -= n;
}
}
};
40.组合总和II
给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用一次。
说明: 所有数字(包括目标数)都是正整数。 解集不能包含重复的组合。
示例 1: 输入: candidates = [10,1,2,7,6,1,5], target = 8, 所求解集为: [ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ]
示例 2: 输入: candidates = [2,5,2,1,2], target = 5, 所求解集为: [ [1,2,2], [5] ]
var combinationSum2 = function(candidates, target) {
let res = [];
let path = [];
let total = 0;
const len = candidates.length;
candidates.sort((a, b) => a - b);
let used = new Array(len).fill(false);
const backtracking = (startIndex) => {
if (total === target) {
res.push([...path]);
return;
}
for(let i = startIndex; i < len && total < target; i++) {
const cur = candidates[i];
if (cur > target - total || (i > 0 && cur === candidates[i - 1] && !used[i - 1])) continue;
path.push(cur);
total += cur;
used[i] = true;
backtracking(i + 1);
path.pop();
total -= cur;
used[i] = false;
}
}
backtracking(0);
return res;
};
131.分割回文串
给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。
返回 s 所有可能的分割方案。
示例: 输入: "aab" 输出: [ ["aa","b"], ["a","a","b"] ]
const isPalindrome = (s, l, r) => {
for (let i = l, j = r; i < j; i++, j--) {
if(s[i] !== s[j]) return false;
}
return true;
}
var partition = function(s) {
const res = [], path = [], len = s.length;
backtracking(0);
return res;
function backtracking(i) {
if(i >= len) {
res.push(Array.from(path));
return;
}
for(let j = i; j < len; j++) {
if(!isPalindrome(s, i, j)) continue;
path.push(s.slice(i, j + 1));
backtracking(j + 1);
path.pop();
}
}
};
93.复原IP地址
给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。
有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。
例如:"0.1.2.201" 和 "192.168.1.1" 是 有效的 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "192.168@1.1" 是 无效的 IP 地址。
示例 1:
- 输入:s = "25525511135"
- 输出:["255.255.11.135","255.255.111.35"]
示例 2:
- 输入:s = "0000"
- 输出:["0.0.0.0"]
示例 3:
- 输入:s = "1111"
- 输出:["1.1.1.1"]
示例 4:
- 输入:s = "010010"
- 输出:["0.10.0.10","0.100.1.0"]
示例 5:
- 输入:s = "101023"
- 输出:["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]
var restoreIpAddresses = function(s) {
const res = [], path = [];
backtracking(0, 0)
return res;
function backtracking(i) {
const len = path.length;
if(len > 4) return;
if(len === 4 && i === s.length) {
res.push(path.join("."));
return;
}
for(let j = i; j < s.length; j++) {
const str = s.slice(i, j + 1);
if(str.length > 3 || +str > 255) break;
if(str.length > 1 && str[0] === "0") break;
path.push(str);
backtracking(j + 1);
path.pop()
}
}
};
78.子集
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例: 输入: nums = [1,2,3] 输出: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
var subsets = function(nums) {
let result = []
let path = []
function backtracking(startIndex) {
result.push([...path])
for(let i = startIndex; i < nums.length; i++) {
path.push(nums[i])
backtracking(i + 1)
path.pop()
}
}
backtracking(0)
return result
};
子集问题(二)
#90.子集II
给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
- 输入: [1,2,2]
- 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ]
var subsetsWithDup = function(nums) {
let result = []
let path = []
let sortNums = nums.sort((a, b) => {
return a - b
})
function backtracing(startIndex, sortNums) {
result.push([...path])
if(startIndex > nums.length - 1) {
return
}
for(let i = startIndex; i < nums.length; i++) {
if(i > startIndex && nums[i] === nums[i - 1]) {
continue
}
path.push(nums[i])
backtracing(i + 1, sortNums)
path.pop()
}
}
backtracing(0, sortNums)
return result
};
491.递增子序列
给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。
示例:
- 输入: [4, 6, 7, 7]
- 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]
var findSubsequences = function(nums) {
let result = []
let path = []
function backtracing(startIndex) {
if(path.length > 1) {
result.push(path.slice())
}
let uset = []
for(let i = startIndex; i < nums.length; i++) {
if((path.length > 0 && nums[i] < path[path.length - 1]) || uset[nums[i] + 100]) {
continue
}
uset[nums[i] + 100] = true
path.push(nums[i])
backtracing(i + 1)
path.pop()
}
}
backtracing(0)
return result
};
46.全排列
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
- 输入: [1,2,3]
- 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]
var permute = function(nums) {
const res = [], path = [];
backtracking(nums, nums.length, []);
return res;
function backtracking(n, k, used) {
if(path.length === k) {
res.push(Array.from(path));
return;
}
for (let i = 0; i < k; i++ ) {
if(used[i]) continue;
path.push(n[i]);
used[i] = true; // 同支
backtracking(n, k, used);
path.pop();
used[i] = false;
}
}
};
排列问题(二)
#47.全排列 II
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
示例 1:
- 输入:nums = [1,1,2]
- 输出: [[1,1,2], [1,2,1], [2,1,1]]
示例 2:
- 输入:nums = [1,2,3]
- 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
var permuteUnique = function (nums) {
nums.sort((a, b) => {
return a - b
})
let result = []
let path = []
function backtracing( used) {
if (path.length === nums.length) {
result.push([...path])
return
}
for (let i = 0; i < nums.length; i++) {
if (i > 0 && nums[i] === nums[i - 1] && !used[i - 1]) {
continue
}
if (!used[i]) {
used[i] = true
path.push(nums[i])
backtracing(used)
path.pop()
used[i] = false
}
}
}
backtracing([])
return result
};
332.重新安排行程
给定一个机票的字符串二维数组 [from, to],子数组中的两个成员分别表示飞机出发和降落的机场地点,对该行程进行重新规划排序。所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。
提示:
- 如果存在多种有效的行程,请你按字符自然排序返回最小的行程组合。例如,行程 ["JFK", "LGA"] 与 ["JFK", "LGB"] 相比就更小,排序更靠前
- 所有的机场都用三个大写字母表示(机场代码)。
- 假定所有机票至少存在一种合理的行程。
- 所有的机票必须都用一次 且 只能用一次。
示例 1:
- 输入:[["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
- 输出:["JFK", "MUC", "LHR", "SFO", "SJC"]
示例 2:
- 输入:[["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
- 输出:["JFK","ATL","JFK","SFO","ATL","SFO"]
- 解释:另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"]。但是它自然排序更大更靠后。
var findItinerary = function(tickets) {
let result = ['JFK']
let map = {}
for (const tickt of tickets) {
const [from, to] = tickt
if (!map[from]) {
map[from] = []
}
map[from].push(to)
}
for (const city in map) {
// 对到达城市列表排序
map[city].sort()
}
function backtracing() {
if (result.length === tickets.length + 1) {
return true
}
if (!map[result[result.length - 1]] || !map[result[result.length - 1]].length) {
return false
}
for(let i = 0 ; i < map[result[result.length - 1]].length; i++) {
let city = map[result[result.length - 1]][i]
// 删除已走过航线,防止死循环
map[result[result.length - 1]].splice(i, 1)
result.push(city)
if (backtracing()) {
return true
}
result.pop()
map[result[result.length - 1]].splice(i, 0, city)
}
}
backtracing()
return result
};
第51题. N皇后
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
- 输入:n = 4
- 输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
- 解释:如上图所示,4 皇后问题存在两个不同的解法。
let dfs = x => {
if (x === n) { //每行都放完
for (let i = 0; i < n; i++) {
console.log(output[i].join(''));
}
console.log('');
return;
}
for (let y = 0; y < n; y++) {
// 检查每列和两对角线是否有冲突
// (正对角线:y=-x+b;反对角线:y=x+b 则有 r=2,i=1与r=1,i=2 在同一条正对角线,反对角-i+n)
if (col[y] || diagonal[x + y] || backDiagonal[x - y + n]) continue;
col[y] = diagonal[x + y] = backDiagonal[x - y + n] = 1;
output[x][y] = 'Q';
dfs(x + 1);//进入下一行
output[x][y] = '.';//回溯
col[y] = diagonal[x + y] = backDiagonal[x - y + n] = 0;
}
}
37. 解数独
编写一个程序,通过填充空格来解决数独问题。
一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。 空白格用 '.' 表示。
var solveSudoku = function(board) {
function isValid(row, col, val, board) {
let len = board.length
// 行中的数字不能重复
for(let i = 0; i < len; i++) {
if(board[row][i] === val) {
return false
}
}
// 列中的数字不能重复
for(let i = 0; i < len; i++) {
if(board[i][col] === val) {
return false
}
}
let startRow = Math.floor(row / 3) * 3
let startCol = Math.floor(col / 3) * 3
//方块中的数字不能重复
for(let i = startRow; i < startRow + 3; i++) {
for(let j = startCol; j < startCol + 3; j++) {
if(board[i][j] === val) {
return false
}
}
}
return true
}
function backTracking() {//回溯函数
for(let i = 0; i < board.length; i++) {
for(let j = 0; j < board[0].length; j++) {//循环行和列
if(board[i][j] !== '.') continue
for(let val = 1; val <= 9; val++) {//尝试在当前单元格放置1-9
if(isValid(i, j, `${val}`, board)) {//判断放置数字的合法性
board[i][j] = `${val}`//放置数字
if (backTracking()) {//合法返回ture
return true
}
board[i][j] = `.`//不合法回溯状态
}
}
return false//1-9的数字都不合法,返回false
}
}
return true//全部可能性都尝试完成 返回true 说明有解
}
backTracking()
return board
};
455.分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
- 输入: g = [1,2,3], s = [1,1]
- 输出: 1 解释:你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以你应该输出1。
示例 2:
- 输入: g = [1,2], s = [1,2,3]
- 输出: 2
- 解释:你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出2
var findContentChildren = function(g, s) {
g = g.sort((a, b) => a - b)
s = s.sort((a, b) => a - b)
let result = 0
let index = s.length - 1
for(let i = g.length - 1; i >= 0; i--) {
if(index >= 0 && s[index] >= g[i]) {
result++
index--
}
}
return result
};
376. 摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 1:
- 输入: [1,7,4,9,2,5]
- 输出: 6
- 解释: 整个序列均为摆动序列。
示例 2:
- 输入: [1,17,5,10,13,15,10,5,16,8]
- 输出: 7
- 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
示例 3:
- 输入: [1,2,3,4,5,6,7,8,9]
- 输出: 2
var wiggleMaxLength = function(nums) {
if(nums.length <= 1) return nums.length
let result = 1
let preDiff = 0
let curDiff = 0
for(let i = 0; i < nums.length - 1; i++) {
curDiff = nums[i + 1] - nums[i]
if((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
result++
preDiff = curDiff
}
}
return result
};
53. 最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例: 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
var maxSubArray = function(nums) {
let result = -Infinity
let count = 0
for(let i = 0; i < nums.length; i++) {
count += nums[i]
if(count > result) {
result = count
}
if(count < 0) {
count = 0
}
}
return result
};